Osteoclasts are multinucleated cells that originate from hemopoietic stem cells. Targeting over activated osteoclasts is thought to be an effective therapeutic approach to osteoporosis. In a previous study, we reported that Tatarinan O, a lignin-like compound, suppressed RANKL-induced osteoclastogenesis. In this study, we further examined the effects on osteoclast formation of three lignin-like compounds including Tatarinan N (TN), Tatarinan U (TU) and Tatarinan V (TV), all containing a common structure of asarone. We found that only TN suppressed RANKL-induced osteoclast differentiation, bone resorption pit formation and F-acting ring formation. TU and TV did not influence RANKL-induced osteoclastogenesis. We also found that TN dose-dependently inhibited the expression of osteoclastogenesis-associated genes, including TRAP, cathepsin K and MMP-9. Furthermore, we found that TN down-regulated the key transcription factor NFATc1 and c-Fos by preventing the activation of NF-κB and phosphorylation of MAPKs including ERK1/2 and p38 but not JNK. TN attenuated calcineurin expression via suppression of the Btk-PLCγ2 cascade and reduction of intracellular Ca, modulating NFATc1 activation. Taking together, our results indicated that TN might have therapeutic potential for osteoporosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2018.09.030DOI Listing

Publication Analysis

Top Keywords

osteoclast differentiation
8
suppressed rankl-induced
8
rankl-induced osteoclastogenesis
8
tatarinan tatarinan
8
tatarinan
5
tatarinan inhibits
4
inhibits osteoclast
4
differentiation attenuating
4
attenuating nf-κb
4
nf-κb mapks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!