Development of an innervated tissue-engineered skin with human sensory neurons and Schwann cells differentiated from iPS cells.

Acta Biomater

Centre LOEX de l'Université Laval, Centre de recherche du CHU de Québec-UL, and Département de Chirurgie, Faculté de Médecine, Université Laval, Québec (Québec), Canada. Electronic address:

Published: December 2018

Cutaneous innervation is increasingly recognized as a major element of skin physiopathology through the neurogenic inflammation driven by neuropeptides that are sensed by endothelial cells and the immune system. To investigate this process in vitro, models of innervated tissue-engineered skin (TES) were developed, yet exclusively with murine sensory neurons extracted from dorsal root ganglions. In order to build a fully human model of innervated TES, we used induced pluripotent stem cells (iPSC) generated from human skin fibroblasts. Nearly 100% of the iPSC differentiated into sensory neurons were shown to express the neuronal markers BRN3A and β3-tubulin after 19 days of maturation. In addition, these cells were also positive to TRPV1 and neurofilament M, and some of them expressed Substance P, TrkA and TRPA1. When stimulated with molecules inducing neuropeptide release, iPSC-derived neurons released Substance P and CGRP, both in conventional monolayer culture and after seeding in a 3D fibroblast-populated collagen sponge model. Schwann cells, the essential partners of neurons for function and axonal migration, were also successfully differentiated from human iPSC as shown by their expression of the markers S100, GFAP, p75 and SOX10. When cultured for one additional month in the TES model, iPSC-derived neurons seeded at the bottom of the sponge formed a network of neurites spanning the whole TES up to the epidermis, but only when combined with mouse or iPSC-derived Schwann cells. This unique model of human innervated TES should be highly useful for the study of cutaneous neuroinflammation. STATEMENT OF SIGNIFICANCE: The purpose of this work was to develop in vitro an innovative fully human tissue-engineered skin enabling the investigation of the influence of cutaneous innervation on skin pathophysiology. To reach that aim, neurons were differentiated from human induced pluripotent stem cells (iPSCs) generated from normal human skin fibroblasts. This innervated tissue-engineered skin model will be the first one to show iPSC-derived neurons can be successfully used to build a 3D nerve network in vitro. Since innervation has been recently recognized to play a central role in many human skin diseases, such as psoriasis and atopic dermatitis, this construct promises to be at the forefront to model these diseases while using patient-derived cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2018.10.011DOI Listing

Publication Analysis

Top Keywords

tissue-engineered skin
16
innervated tissue-engineered
12
sensory neurons
12
schwann cells
12
human skin
12
ipsc-derived neurons
12
skin
9
human
9
cells
9
neurons
8

Similar Publications

Objective: The skin is a complex organ that includes various stem cell populations. Current approaches for non-healing skin defects are sometimes inadequate and many attempts have been made to regenerate skin integrity. The aim of this review is to bridge the gap between basic research and clinical application of skin integrity regeneration.

View Article and Find Full Text PDF

Angiogenesis-promoting effect of SKP-SC-EVs-derived miRNA-30a-5p in peripheral nerve regeneration by targeting LIF and ANGPT2.

J Biol Chem

December 2024

Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, 226001, China. Electronic address:

Ischemia and hypoxia caused by vascular injury intensify nerve damage. Skin precursor-derived Schwann cells have demonstrated an accelerated in vivo pre-vascularization of tissue-engineered nerves. Furthermore, extracellular vesicles from skin precursor-derived Schwann cells (SKP-SC-EVs) show the potential in aiding peripheral nerve regeneration.

View Article and Find Full Text PDF

Arginine-Biofunctionalized Ternary Hydrogel Scaffolds of Carboxymethyl Cellulose-Chitosan-Polyvinyl Alcohol to Deliver Cell Therapy for Wound Healing.

Gels

October 2024

Center of Nanoscience, Nanotechnology, and Innovation-CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627-Escola de Engenharia, Bloco 2-Sala 2233, Belo Horizonte 31270-901, MG, Brazil.

Wound healing is important for skin after deep injuries or burns, which can lead to hospitalization, long-term morbidity, and mortality. In this field, tissue-engineered skin substitutes have therapy potential to assist in the treatment of acute and chronic skin wounds, where many requirements are still unmet. Hence, in this study, a novel type of biocompatible ternary polymer hybrid hydrogel scaffold was designed and produced through an entirely eco-friendly aqueous process composed of carboxymethyl cellulose, chitosan, and polyvinyl alcohol and chemically cross-linked by citric acid, forming three-dimensional (3D) matrices, which were biofunctionalized with L-arginine (L-Arg) to enhance cellular adhesion.

View Article and Find Full Text PDF

Recent advances in 3D bioprinted polysaccharide hydrogels for biomedical applications: A comprehensive review.

Carbohydr Polym

January 2025

Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.

Article Synopsis
  • - Polysaccharide hydrogels are versatile bioinks for 3D bioprinting that mimic the extracellular matrix, promoting cell growth and differentiation, making them suitable for tissue engineering and regenerative medicine applications.
  • - This review covers the methods of creating these hydrogels, their properties, and their uses, particularly in drug delivery and developing tissues like bone and skin, as well as conducting disease modeling.
  • - Despite their potential, the review notes challenges in improving the chemical properties, printability, and long-term stability of polysaccharide hydrogels, which need to be addressed for better application outcomes.
View Article and Find Full Text PDF

Nanostructured fibrin-agarose hydrogels loaded with allogeneic fibroblasts as bio-dressings for acute treatment of massive burns.

Biomed Pharmacother

October 2023

Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de diseño y traslación de Terapias Avanzadas (RAdytTA), Fundación Pública Andaluza Progreso y Salud, Seville, Spain; Centro de Transfusión, Tejidos y Células (CTTC) de Sevilla, Seville, Spain. Electronic address:

The prompt management of patients with massive burns is essential to maximize survival by preventing infection, hemorrhage, fluid and heat loss, and to optimally prepare the wound bed for the application of autografts or cultured tissue-engineered artificial autologous skin. Acute treatments are typically based on temporary bio-dressings, commonly cadaveric skin allografts, but supply challenges, high costs and increasingly stringent regulatory requirements preclude their widespread use. Nanostructured fibrin-agarose hydrogels (NFAH) have been proven to be safe and effective biomaterials in preclinical and clinical studies, and show good hemostatic and biomechanical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!