Drugs of abuse modify synaptic long-term potentiation and long-term depression (LTD) in the nucleus accumbens, and the impairment of synaptic plasticity in this brain region may be a universal feature of drug addiction. It is unknown whether metabotropic glutamate receptors (mGluRs) play a role in synaptic plasticity induced by drugs such as morphine. The neurochemical, electrophysiological, and Western blotting experiments reported here reveal a novel form of LTD in synapses of the shell region of the nucleus accumbens induced in vivo by low-frequency stimulation of the medial prefrontal cortex. This plasticity required the activation of N-methyl-d-aspartate receptors and mGluR2/3 but not mGluR5. The expression of mGluR2/3 was downregulated during withdrawal from repeated morphine exposure (10 days after the last injection), resulting in impaired low-frequency stimulation-induced LTD. These results indicate that withdrawal-induced mGluR2/3 downregulation alters neural plasticity after morphine exposure, which may be a mechanism contributing to drug addiction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2018.10.018DOI Listing

Publication Analysis

Top Keywords

nucleus accumbens
12
long-term depression
8
depression nucleus
8
synaptic plasticity
8
drug addiction
8
morphine exposure
8
downregulation mglur2/3
4
mglur2/3 receptors
4
morphine
4
receptors morphine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!