Botulinum neurotoxin Type A (BoNT/A) is an effective treatment for several movement disorders, including spasticity and dystonia. BoNT/A acts by cleaving synaptosomal-associated protein of 25 kDa (SNAP-25) at the neuromuscular junction, thus blocking synaptic transmission and weakening overactive muscles. However, not all the therapeutic benefits of the neurotoxin are explained by peripheral neuroparalysis, suggesting an action of BoNT/A on central circuits. Currently, the specific targets of BoNT/A central activity remain unclear. Here, we show that catalytically active BoNT/A is transported to the facial nucleus (FN) after injection into the nasolabial musculature of rats and mice. BoNT/A-mediated cleavage of SNAP-25 in the FN is prevented by intracerebroventricular delivery of antitoxin antibodies, demonstrating that BoNT/A physically leaves the motoneurons to enter second-order neurons. Analysis of intoxicated terminals within the FN shows that BoNT/A is transcytosed preferentially into cholinergic synapses. The cholinergic boutons containing cleaved SNAP-25 are associated with a larger size, suggesting impaired neuroexocytosis. Together, the present findings indicate a previously unrecognized source of reduced motoneuron drive after BoNT/A via blockade of central, excitatory cholinergic inputs. These data highlight the ability of BoNT/A to selectively target and modulate specific central circuits, with consequent impact on its therapeutic effectiveness in movement disorders. Botulinum neurotoxins are among the most potent toxins known. Despite this, their specific and reversible action prompted their use in clinical practice to treat several neuromuscular pathologies (dystonia, spasticity, muscle spasms) characterized by hyperexcitability of peripheral nerve terminals or even in nonpathological applications (i.e., cosmetic use). Substantial experimental and clinical evidence indicates that not all botulinum neurotoxin Type A (BoNT/A) effects can be explained solely by the local action (i.e., silencing of the neuromuscular junction). In particular, there are cases in which the clinical benefit exceeds the duration of peripheral neurotransmission blockade. In this study, we demonstrate that BoNT/A is transported to facial motoneurons, released, and internalized preferentially into cholinergic terminals impinging onto the motoneurons. Our data demonstrate a direct central action of BoNT/A.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596210 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0294-18.2018 | DOI Listing |
Microorganisms
December 2024
Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
Tetanus neurotoxins (TeNT) and botulinum neurotoxins (BoNTs) are closely related ~150 kDa protein toxins that together comprise the group of clostridial neurotoxins (CNTs) expressed by various species of . While TeNT is expressed as a single polypeptide, BoNTs are always produced alongside multiple non-toxic proteins that form a stabilizing complex with BoNT and are encoded in a conserved toxin gene cluster. It is unknown how evolved without a similar gene cluster and why complex-free TeNT is secreted as a stable and soluble protein by , whereas complexing proteins appear to be essential for BoNT stability in culture supernatants of .
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Division of Applied Biological Chemistry, Graduate School of Environmental Horticulture, Chiba University, Matsudo 271-8510, Chiba, Japan.
Botulinum neurotoxins (BoNTs), ricin, and many other biological toxins are called AB toxins possessing heterogeneous A and B subunits. We propose herein a quick and safe sensing approach to AB toxins based on their unique quaternary structures. The proposed approach utilizes IgG antibodies against their A-subunits in combination with those human cell-membrane glycolipids that act as the natural ligands of B-subunits.
View Article and Find Full Text PDFBiomedicines
December 2024
National Institute of Public Health NIH-National Research Institute, Chocimska 24, 00-791 Warsaw, Poland.
The discovery of microbial toxins as the primary factors responsible for disease manifestations and the discovery that these toxins could be neutralised by antitoxins are linked to the birth of immunology. In the late 19th century, the serum or plasma of animals or patients who had recovered from infectious diseases or who had been immunised with a relevant antigen began to be used to treat or prevent infections. Before the advent of widespread vaccination campaigns, antitoxins played a key role in the treatment and prevention of diseases such as diphtheria and tetanus.
View Article and Find Full Text PDFClin Med Insights Case Rep
January 2025
Department of Rehabilitation, Nara Prefectural General Medical Center, Nara, Japan.
Background: Spasticity is an upper motor neuron syndrome that exacerbates motor paralysis and is rarely associated with pain. This report elucidates the management of drug-resistant pain attributed to an adolescent brain tumor using botulinum therapy.
Case Presentation: A 15-year-old female patient experienced dizziness, developed muscle weakness in her upper extremities, and was diagnosed with diffuse glioblastoma of the pons.
BMJ Open
January 2025
Siriraj Health Policy Unit, Mahidol University Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
Objectives: To evaluate the cost-utility of botulinum toxin A (BoNT-A) for treating upper limb (UL) and lower limb (LL) post-stroke spasticity.
Design: Using a Markov model, adopting a societal perspective and a lifetime horizon with a 3% annual discount rate, the cost-utility analysis was conducted to compare BoNT-A combined with standard of care (SoC) with SoC alone. Costs, utilities, transitional probabilities and treatment efficacy were derived from 5-year retrospective data from tertiary hospitals and meta-analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!