MicroRNA-494-dependent WDHDI inhibition suppresses epithelial-mesenchymal transition, tumor growth and metastasis in cholangiocarcinoma.

Dig Liver Dis

Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, PR China. Electronic address:

Published: March 2019

Background: Cholangiocarcinoma (CCA) represents a devastating malignancy characterized by high mortality, and notoriously problematic to diagnose. Recently, microRNAs (miRs) have been intensively investigated due to their potential usefulness from a tumor treatment perspective.

Aims: The current study was aimed to investigate whether miR-494 influences epithelial-mesenchymal transition (EMT), tumor growth and metastasis of CCA.

Methods: The regulatory miRNAs of WDHD1 in CCA expression chip were predicted, followed by determination of the miR-494 and WDHD1 expression in normal cholangiocyte tissues and CCA tissues. The related protein levels were determined. CCA cell migration, invasion, viability, and cell cycle distribution and the dosage-dependent effect of miR-494 on CCA cell growth were subsequently detected. Finally, tumorigenicity and lymph node metastasis (LNM) were measured.

Results: Initially, miR-194 affected the CCA development via negatively regulating WDHD1 and miR-494 which were downregulated while WDHD1 was upregulated in CCA. In addition, miR-494 overexpression elevated E-cadherin expression while decreased expressions of WDHD1, N-cadherin, Vimentin, Snail, Twist and MMP-9. Finally, overexpressed miR-494 was observed to suppress EMT, cell viability, migration, invasion, arrest cell cycle progression, tumor formation, and LNM while accelerating cell apoptosis in vivo.

Conclusion: This study indicated that miR-494 overexpression suppresses EMT, tumor formation and LNM while promoting CCA cell apoptosis through inhibiting WDHD1 in CCA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dld.2018.08.021DOI Listing

Publication Analysis

Top Keywords

cca cell
12
cca
9
epithelial-mesenchymal transition
8
tumor growth
8
growth metastasis
8
emt tumor
8
wdhd1 cca
8
migration invasion
8
cell cycle
8
mir-494 overexpression
8

Similar Publications

The Role of Sulfatides in Liver Health and Disease.

Front Biosci (Landmark Ed)

January 2025

Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.

Sulfatides or 3-O-sulfogalactosylceramide are negatively charged sulfated glycosphingolipids abundant in the brain and kidneys and play crucial roles in nerve impulse conduction and urinary pH regulation. Sulfatides are present in the liver, specifically in the biliary tract. Sulfatides are self-lipid antigens presented by cholangiocytes to activate cluster of differentiation 1d (CD1d)-restricted type II natural killer T (NKT) cells.

View Article and Find Full Text PDF

Cholangiocarcinoma (CCA) represents approximately 3% of all gastrointestinal cancers and is a highly heterogeneous and aggressive malignancy originating from the epithelial cells of the biliary tree. CCA is classified by anatomical location into intrahepatic (iCCA), extrahepatic (eCCA), gallbladder cancer (GBC), and ampullary cancers. Although considered a rare tumor, CCA incidence has risen globally, particularly due to the increased diagnosis of iCCA.

View Article and Find Full Text PDF

Cannabidiol suppresses proliferation and induces cell death, autophagy and senescence in human cholangiocarcinoma cells via the PI3K/AKT/mTOR pathway.

J Tradit Complement Med

November 2024

Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.

Background And Aim: Cholangiocarcinoma (CCA) is usually diagnosed at a late stage, leading to treatment failure. Cannabidiol (CBD), exhibits diverse anti-cancer effects in various cancers, offering avenues for improving CCA treatment. This study investigated the effects of CBD on human CCA cells and the underlying mechanisms and .

View Article and Find Full Text PDF

Background/aims: Cholangiocarcinoma (CCA) is a malignant and insidious tumor that is tricky to treat. Long non-coding RNA (LncRNA) LINC01123 is a biomolecule that influences cancer progression by regulating gene expression via influencing the regulatory function of microRNAs in gene expression. Therefore, this study investigated the connection between LINC01123 and CCA and explored the underlying mechanism.

View Article and Find Full Text PDF

Cholangiocarcinoma (CCA) is an aggressive cancer originating from bile duct epithelial cells, with a high rate of recurrence following surgical resection. Recurrence is categorized as early linked to aggressive tumor biology than late recurrence. This study aimed to identify novel peptide mass fingerprints (PMFs) and potential biomarker panels in the serum of CCA patients with early and late recurrence using mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!