Background: In Arabidopsis, a long day flowering plant, CONSTANS (CO) acts as a transcriptional activator of flowering under long day (LD) condition. In rice, a short day flowering plant, Hd1, the ortholog of CO, plays dual functions in respond to day-length, activates flowering in short days and represses flowering in long days. In addition, alleles of Hd1 account for ~ 44% of the variation in flowering time observed in cultivated rice and sorghum. How does it work in bamboo? The function of CO in bamboo is similar to that in Arabidopsis?

Results: Two CO homologous genes, PvCO1 and PvCO2, in Phyllostachys violascens were identified. Alignment analysis showed that the two PvCOLs had the highest sequence similarity to rice Hd1. Both PvCO1 and PvCO2 expressed in specific tissues, mainly in leaf. The PvCO1 gene had low expression before flowering, high expression during the flowering stage, and then declined to low expression again after flowering. In contrast, expression of PvCO2 was low during the flowering stage, but rapidly increased to a high level after flowering. The mRNA levels of both PvCOs exhibited a diurnal rhythm. Both PvCO1 and PvCO2 proteins were localized in nucleus of cells. PvCO1 could interact with PvGF14c protein which belonged to 14-3-3 gene family through B-box domain. Overexpression of PvCO1 in Arabidopsis significantly caused late flowering by reducing the expression of AtFT, whereas, transgenic plants overexpressing PvCO2 showed a similar flowering time with WT under LD conditions. Taken together, these results suggested that PvCO1 was involved in the flowering regulation, and PvCO2 may either not have a role in regulating flowering or act redundantly with other flowering regulators in Arabidopsis. Our data also indicated regulatory divergence between PvCOLs in Ph. violascens and CO in Arabidopsis as well as Hd1 in Oryza sativa. Our results will provide useful information for elucidating the regulatory mechanism of COLs involved in the flowering.

Conclusions: Unlike to the CO gene in Arabidopsis, PvCO1 was a negative regulator of flowering in transgenic Arabidopsis under LD condition. It was likely that long period of vegetative growth of this bamboo species was related with the regulation of PvCO1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6186071PMC
http://dx.doi.org/10.1186/s12870-018-1469-0DOI Listing

Publication Analysis

Top Keywords

flowering
18
pvco1 pvco2
12
expression flowering
12
pvco1
9
overexpression pvco1
8
flowering reducing
8
reducing expression
8
transgenic arabidopsis
8
long day
8
day flowering
8

Similar Publications

An involvement of a new zinc finger protein PbrZFP719 into pear self-incompatibility reaction.

Plant Cell Rep

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.

This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.

View Article and Find Full Text PDF

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

Carboxylated cellulose nanocrystals mediated flower-like zinc oxide for antimicrobial without activation of light.

J Colloid Interface Sci

April 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.

View Article and Find Full Text PDF

Current study investigates the medicinal applications of (Palash), the state flower of Jharkhand, India, focusing on synthesising biomodified copper oxide nanoparticles (CuO-NPs) and its antifungal properties. Flavonoid content in the flower extract was quantified by aluminium chloride colorimetric analysis. CuO-NPs were synthesised via co-precipitation method and then modified with methanolic flower extract.

View Article and Find Full Text PDF

The use of biological control agents is one of the best strategies available to combat the plant diseases in an ecofriendly manner. Biocontrol bacteria capable of providing beneficial effect in crop plant growth and health, have been developed for several decades. It highlights the need for a deeper understanding of the colonization mechanisms employed by biocontrol bacteria to enhance their efficacy in plant pathogen control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!