Astaxanthin is a xanthophyll carotenoid showing efficient scavenging ability and represents an interesting candidate in the development of new therapies for preventing and treating oxidative stress-related pathologies. However, its high lipophilicity and thermolability often limits its antioxidant efficacy in human applications. Here, we developed a formulation of lipid carriers to protect astaxanthin's antioxidant activity. The synthesis of natural astaxanthin-loaded nanostructured lipid carriers using a green process with sunflower oil as liquid lipid is presented. Their antioxidant activity was measured by α-Tocopherol Equivalent Antioxidant Capacity assay and was compared to those of both natural astaxanthin and α-tocopherol. Characterizations by dynamic light scattering, atomic force microscopy, and scattering electron microscopy techniques were carried out and showed spherical and surface negative charged particles with z-average and polydispersity values of ~60 nm and ~0.3, respectively. Astaxanthin loading was also investigated showing an astaxanthin recovery of more than 90% after synthesis of nanostructured lipid carriers. These results demonstrate the capability of the formulation to stabilize astaxanthin molecule and preserve and enhance the antioxidant activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222411 | PMC |
http://dx.doi.org/10.3390/molecules23102601 | DOI Listing |
Front Pharmacol
January 2025
Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Carbohydrates, lipids, bile acids, various inorganic salt ions and organic acids are the main nutrients or indispensable components of the human body. Dysregulation in the processes of absorption, transport, metabolism, and excretion of these metabolites can lead to the onset of severe metabolic disorders, such as type 2 diabetes, non-alcoholic fatty liver disease, gout and hyperbilirubinemia. As the second largest membrane receptor supergroup, several major families in the solute carrier (SLC) supergroup have been found to play key roles in the transport of substances such as carbohydrates, lipids, urate, bile acids, monocarboxylates and zinc ions.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address:
Lipid nanoparticles (LNPs) have shown promising performance in mRNA delivery. Nevertheless, a thorough understanding of the relationship between mRNA delivery efficacy and the structure of LNPs remains imperative. In this study, we systematically investigated the effects of additional hydrophobic amines on the physicochemical properties of mRNA LNPs and their delivery efficacy.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Cell Biology, Emory University, Atlanta, GA 30322.
To regulate brain function, peripheral compounds must traverse the blood-brain barrier (BBB), an interface between the brain and the circulatory system. To determine whether specific transport mechanisms are relevant for sleep, we conducted a BBB-specific inducible RNAi knockdown (iKD) screen for genes affecting sleep in . We observed reduced sleep with knockdown of solute carrier , a carnitine transporter, as determined by isotope flux.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, 11451, Riyadh, Saudi Arabia.
The current project was designed to develop piperine-loaded solid lipid microparticles (SLMs) to assess the anti-arthritic potential of piperine (PIP). Variable proportions of carnauba wax, beeswax, and tween 80 were employed for preparing SLMs by using the solvent evaporation technique. The developed formulations were subjected to particle size measurements, entrapment efficiency (EE), and zeta potential (ZP) determination.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Jinshan College of Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
Yeast immobilization systems can recoup yeast losses in continuous batch fermentation and relieve substrate or product inhibition. We report the use of solution blow spinning process to efficiently prepare polyhydroxyalkanoate (PHB) /konjac glucomannan (KGM) nanofiber membranes as immobilization carriers for Saccharomyces cerevisiae. The prepared PHB/KGM nanofiber membranes had fiber diameters similar to the scale of yeast cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!