Co-expression network analysis of peripheral blood transcriptome identifies dysregulated protein processing in endoplasmic reticulum and immune response in recurrent MDD in older adults.

J Psychiatr Res

Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, South Australia, Australia; Department of Psychiatry, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville VIC, 3010, Australia. Electronic address:

Published: December 2018

The molecular factors involved in the pathophysiology of major depressive disorder (MDD) remain poorly understood. One approach to examine the molecular basis of MDD is co-expression network analysis, which facilitates the examination of complex interactions between expression levels of individual genes and how they influence biological pathways affected in MDD. Here, we applied an unsupervised gene-network based approach to a prospective experimental design using microarray genome-wide gene expression from the peripheral whole blood of older adults. We utilised the Sydney Memory and Ageing Study (sMAS, N = 521) and the Older Australian Twins Study (OATS, N = 186) as discovery and replication cohorts, respectively. We constructed networks using Weighted Gene Co-expression Network Analysis (WGCNA), and correlated identified modules with four subtypes of depression: single episode, current, recurrent, and lifetime MDD. Four modules of highly co-expressed genes were associated with recurrent MDD (N = 27) in our discovery cohort (FDR<0.2), with no significant findings for a single episode, current or lifetime MDD. Functional characterisation of these modules revealed a complex interplay between dysregulated protein processing in the endoplasmic reticulum (ER), and innate and adaptive immune response signalling, with possible involvement of pathogen-related pathways. We were underpowered to replicate findings at the network level in an independent cohort (OATS), however; we found a significant overlap for 9 individual genes with similar co-expression and dysregulation patterns associated with recurrent MDD in both cohorts. Overall, our findings support other reports on dysregulated immune response and protein processing in the ER in MDD and provide novel insights into the pathophysiology of depression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpsychires.2018.09.017DOI Listing

Publication Analysis

Top Keywords

co-expression network
12
network analysis
12
peripheral blood
8
recurrent mdd
8
older adults
8
mdd
6
analysis peripheral
4
blood transcriptome
4
transcriptome identifies
4
identifies dysregulated
4

Similar Publications

Background: Ankylosing spondylitis (AS) is a chronic autoimmune disease characterized by inflammation of the sacroiliac joints and spine. Cuproptosis is a newly recognized copper-induced cell death mechanism. Our study explored the novel role of cuproptosis-related genes (CRGs) in AS, focusing on immune cell infiltration and molecular clustering.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) is a progressive condition that arises from diverse etiological factors, resulting in structural alterations and functional impairment of the kidneys. We aimed to establish the Anoikis-related gene signature in CKD by bioinformatics analysis.

Methods: We retrieved 3 datasets from the Gene Expression Omnibus (GEO) database to obtain differentially expressed genes (DEGs), followed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) of them, which were intersected with Anoikis-related genes (ARGs) to derive Anoikis-related differentially expressed genes (ARDEGs).

View Article and Find Full Text PDF

Basal Cell Carcinoma (BCC) and Actinic Keratosis (AK) are prevalent skin conditions with significant health complications. The molecular mechanisms underlying these conditions and their potential shared pathways remain ambiguous despite their prevalence. Therefore, this study aims to elucidate the common molecular pathways and potential therapeutic targets for BCC and AK through comprehensive computational network analysis.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) remains a significant global health challenge, emphasizing the need for precise identification of patients with specific therapeutic targets and those at high risk of metastasis. This study aimed to identify novel therapeutic targets for personalized treatment of TNBC patients by elucidating their roles in cell cycle regulation. Using weighted gene co-expression network analysis (WGCNA), we identified 83 hub genes by integrating gene expression profiles with clinical pathological grades.

View Article and Find Full Text PDF

Background: Mounting evidence underline the relevance of macromolecular complexes in cancer. Integrins frequently recruit ion channels and transporters within complexes which behave as signaling hubs. A complex composed by β1 integrin, hERG1 K channel, the neonatal form of the Na channel Na 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!