Manganese (Mn) pollution in marine waters is increasing and sensitivities to this metal vary widely among marine species. The aims of this study were to characterise Mn chemistry in seawater, and evaluate the toxic effects of Mn on various life stages of two scleractinian corals - the branching sp. Acropora spathulata and massive sp. Platygyra daedalea, and the anemone Exaiptasia pallida. Analytical and theoretical characterisation experiments showed that 97-100% of Mn (II) additions ≤ 200 mg/L in seawater were soluble over 72 h and largely assumed labile complexes. Concentrations estimated to reduce coral fertilisation success by 50% (5.5-h EC50) were 237 mg/L for A. spathulata and 164 mg/L for P. daedalea. A relatively low 72-h LC50 of 7 mg/L was calculated for A. spathulata larvae. In a pilot test using fragments of adult A. spathulata, intact coral tissue rapidly sloughed away from the underlying skeleton at very low concentrations with a 48-h EC50 of just 0.7 mg/L. For E. pallida, survival, tentacle retraction and reproduction were unaffected by prolonged high exposures (12-d NOEC 54 mg/L). This study provides important data supporting the derivation of separate water quality guidelines for Mn in systems with and without coral - a decision recently considered by Australian and New Zealand authorities. It demonstrates the high sensitivity of coral larvae and adult colonies to Mn and the potential risks associated with relying on other early life stage tests and/or E. pallida as ecotoxicological representatives of critically important scleractinian corals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2018.09.116 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!