Granzyme B-loaded, cell-selective penetrating and reduction-responsive polymersomes effectively inhibit progression of orthotopic human lung tumor in vivo.

J Control Release

Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China. Electronic address:

Published: November 2018

The clinical use of protein therapeutics with intracellular targets is hampered by its in vivo fragility and low cell permeability. Here, we report that cell-selective penetrating and reduction-responsive polymersomes (CPRPs) mediate high-efficiency targeted delivery of granzyme B (GrB) to orthotopic human lung tumor in vivo. Model protein studies using FITC-labeled cytochrome C (FITC-CC) revealed efficient and high protein loading up to 17.2 wt% for CPRPs. FITC-CC-loaded CPRPs exhibited a small size of 82-90 nm, reduction-responsive protein release, as well as greatly enhanced internalization and cytoplasmic protein release in A549 lung cancer cells compared with the non-targeted FITC-CC-loaded RPs control. GrB-loaded CPRPs showed a high potency toward A549 lung cancer cells with a half maximal inhibitory concentration (IC) of 20.7 nM. Under the same condition, free GrB was essentially non-toxic. Importantly, installing cell-selective penetrating peptide did not alter the circulation time but did enhance tumor accumulation of RPs. Orthotopic A549-Luc lung tumor-bearing nude mice administered with GrB-loaded CPRPs at a dosage of 2.88 nmol GrB equiv./kg showed complete tumor growth inhibition with little body weight loss throughout the treatment period, resulting in significantly improved survival rate over the non-targeted and non-treated controls. These cell-selective penetrating and reduction-responsive polymersomes provide a targeted protein therapy for cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2018.10.013DOI Listing

Publication Analysis

Top Keywords

cell-selective penetrating
16
penetrating reduction-responsive
12
reduction-responsive polymersomes
12
orthotopic human
8
human lung
8
lung tumor
8
tumor vivo
8
protein release
8
a549 lung
8
lung cancer
8

Similar Publications

Herein, a water-soluble, ultrabright, near-infrared (NIR) fluorescent, mechanically interlocked molecules (MIMs)-peptide bioconjugate is designed with dual targeting capabilities. Cancer cell surface overexpressed αβ integrin targeting two RGDS tetrapeptide residues is tethered at the macrocycle of MIMs-peptide bioconjugate via Cu(I)-catalyzed click chemistry on the Wang resin, and mitochondria targeting lipophilic cationic TPP functionality is conjugated at the axle dye. Living carcinoma cell selective active targeting, subsequently cell penetration, mitochondrial imaging, including the ultrastructure of cristae, and real-time tracking of malignant mitochondria by MIMs-peptide bioconjugate (RGDS)-Mito-MIMs-TPP are established by stimulated emission depletion (STED) super-resolved fluorescence microscopy.

View Article and Find Full Text PDF

Targeting nonapoptotic cell death offers a promising strategy for overcoming apoptosis resistance in cancer. In this study, we developed Tat-Ram13, a 25-mer peptide that fuses the NOTCH1 intracellular domain fragment RAM13 with a cell-penetrating HIV-1 TAT, for the treatment of T-cell acute lymphoblastic leukemia with aberrant NOTCH1 mutation. Tat-Ram13 significantly downregulated NOTCH1-target genes in T-ALL cell lines.

View Article and Find Full Text PDF

Diversity-oriented synthesis of second generation guanidinium-rich transporters toward cell-selective penetration.

Bioorg Chem

December 2024

Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada. Electronic address:

Cell-penetrating peptides (CPPs) hold significant promise for intracellular delivery of various cargo molecules such as therapeutics. However, the lack of selectivity remains a critical challenge and limits the clinical application of CPPs. Using an automated peptide synthesizer, we generated a diversity-oriented library of 256 peptidomimetics containing four modified peptoid guanidine-bearing monomers incorporated alternatively with four α-amino acids.

View Article and Find Full Text PDF

The control of malaria, a disease caused by parasites that kills over half a million people every year, is threatened by the continual emergence and spread of drug resistance. Therefore, new molecules with different mechanisms of action are needed in the antimalarial drug development pipeline. Peptides developed from host defense molecules are gaining traction as anti-infectives due to theood of inducing drug resistance.

View Article and Find Full Text PDF

We have synthesized an acidic pH-activatable dual targeting ratiometric fluorescent probe-peptide conjugate using the SPPS protocol on Rink amide AM resin. Living carcinoma cell specific active targeting, successive cell penetration, and selective staining of lysosomes are accomplished. Real-time monitoring of lysosomes, 3D, and multicolor cancer cell imaging are also attained.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!