While nuclear actin was reported ~50 years ago, it's in vivo prevalence and structure remain largely unknown. Here, we use Drosophila oogenesis, that is, follicle development, to characterize nuclear actin. We find that three different reagents-DNase I, anti-actin C4, and anti-actin AC15-recognize distinct pools of nuclear actin. DNase I labels monomeric or G-actin, and, during follicle development, G-actin is present in the nucleus of every cell. Some G-actin is recognized by the C4 antibody. In particular, C4 nuclear actin colocalizes with DNase I to the nucleolus in anterior escort cells, follicle stem cells, some mitotic follicle cells, and a subset of nurse cells during early oogenesis. C4 also labels polymeric nuclear actin in the nucleoplasm of the germline stem cells, early cystoblasts, and oocytes. The AC15 antibody labels a completely distinct pool of nuclear actin from that of DNase I and C4. Specifically, AC15 nuclear actin localizes to the chromatin in the nurse and follicle cells during mid-to-late oogenesis. Within the oocyte, AC15 nuclear actin progresses from localizing to puncta surrounding the DNA, to forming a filamentous cage around the chromosomes. Together these findings reveal that nuclear actin is highly prevalent in vivo, and multiple pools of nuclear actin exist and can be recognized using different reagents. Additionally, our localization studies suggest that nuclear actin may regulate stemness, nucleolar structure and function, transcription, and nuclear structure. Such findings call for further studies to explore the prevalence, diversity, and functions of nuclear actin across tissues and organisms. Anat Rec, 301:2014-2036, 2018. © 2018 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6293971 | PMC |
http://dx.doi.org/10.1002/ar.23964 | DOI Listing |
Cells
January 2025
Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea.
An actin-binding protein, known as Calponin 3 (CNN3), modulates the remodeling of the actin cytoskeleton, a fundamental process for the maintenance of skeletal muscle homeostasis. Although the roles of CNN3 in actin remodeling have been established, its biological significance in myoblast differentiation remains largely unknown. This study investigated the functional significance of CNN3 in myogenic differentiation, along with its effects on actin remodeling and mechanosensitive signaling in C2C12 myoblasts.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States.
Resolution of inflammation is essential for normal tissue healing and regeneration, with macrophages playing a key role in regulating this process through phenotypic changes from a pro-inflammatory to an anti-inflammatory state. Pharmacological and mechanical (mechanotherapy) techniques can be employed to polarize macrophages toward an anti-inflammatory phenotype, thereby diminishing inflammation. One clinically relevant pharmacological approach is the inhibition of Transient Receptor Potential Vanilloid 4 (TRPV4).
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Department of Ophthalmology, The Future Medicine Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.
Excessive fibrosis is the primary factor for the failure of glaucoma drainage device (GDD) implantation. Thus, strategies to suppress scar formation in GDD implantation are crucial. Although it is known that in implanted medical devices, microscale modification of the implant surface can modulate cell behavior and reduce the incidence of fibrosis, in the field of ophthalmic implants, especially the modification and effects of hydrogel micropatterns have rarely been reported.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
January 2025
Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India. Electronic address:
The neuronal cytoskeleton has remained a less explored area of research in establishing neuroprotection. HDAC6 has been studied with respect to many neurodegenerative diseases, especially AD. It exhibits the ability to interact with various cytoskeletal proteins and to promote migration in cells.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy.
The trimeric intracellular cation channel B (TRIC-B), encoded by TMEM38B, is a potassium (K) channel present in the endoplasmic reticulum membrane, where it counterbalances calcium (Ca) exit. Lack of TRIC-B activity causes a recessive form of the skeletal disease osteogenesis imperfecta (OI), namely OI type XIV, characterized by impaired intracellular Ca flux and defects in osteoblast (OB) differentiation and activity. Taking advantage of the OB-specific Tmem38b knockout mouse (Runx2Cre;Tmem38b; cKO), we investigated how the ion imbalance affects the osteogenetic process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!