A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

State dependence of stimulus-induced variability tuning in macaque MT. | LitMetric

State dependence of stimulus-induced variability tuning in macaque MT.

PLoS Comput Biol

Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America.

Published: October 2018

Behavioral states marked by varying levels of arousal and attention modulate some properties of cortical responses (e.g. average firing rates or pairwise correlations), yet it is not fully understood what drives these response changes and how they might affect downstream stimulus decoding. Here we show that changes in state modulate the tuning of response variance-to-mean ratios (Fano factors) in a fashion that is neither predicted by a Poisson spiking model nor changes in the mean firing rate, with a substantial effect on stimulus discriminability. We recorded motion-sensitive neurons in middle temporal cortex (MT) in two states: alert fixation and light, opioid anesthesia. Anesthesia tended to lower average spike counts, without decreasing trial-to-trial variability compared to the alert state. Under anesthesia, within-trial fluctuations in excitability were correlated over longer time scales compared to the alert state, creating supra-Poisson Fano factors. In contrast, alert-state MT neurons have higher mean firing rates and largely sub-Poisson variability that is stimulus-dependent and cannot be explained by firing rate differences alone. The absence of such stimulus-induced variability tuning in the anesthetized state suggests different sources of variability between states. A simple model explains state-dependent shifts in the distribution of observed Fano factors via a suppression in the variance of gain fluctuations in the alert state. A population model with stimulus-induced variability tuning and behaviorally constrained information-limiting correlations explores the potential enhancement in stimulus discriminability by the cortical population in the alert state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6211771PMC
http://dx.doi.org/10.1371/journal.pcbi.1006527DOI Listing

Publication Analysis

Top Keywords

alert state
16
stimulus-induced variability
12
variability tuning
12
fano factors
12
firing rates
8
firing rate
8
stimulus discriminability
8
compared alert
8
state
7
variability
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!