We theoretically study noncoplanar spin textures in polar magnetic conductors. Starting from the Kondo lattice model with the Rashba spin-orbit coupling, we derive an effective spin model with generalized Ruderman-Kittel-Kasuya-Yosida interactions including the anisotropic and antisymmetric exchange interactions. By performing simulated annealing for the effective model, we find that a vortex crystal of Néel type is stabilized even in the absence of a magnetic field. Moreover, we demonstrate that a Bloch-type vortex crystal, which is usually associated with the Dresselhaus spin-orbit coupling, can also be realized in our Rashba-based model. A magnetic field turns the vortex crystals into Néel- and Bloch-type Skyrmion-like crystals. Our results underscore that the interplay between the spin-orbit coupling and itinerant magnetism brings fertile possibilities of noncoplanar magnetic orderings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.121.137202 | DOI Listing |
J Phys Condens Matter
January 2025
AIMR, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8578, JAPAN.
Monolayer atomic thin films of group-V elements have a high potential for application in spintronics and valleytronics because of their unique crystal structure and strong spin-orbit coupling. We fabricated Sb and Bi monolayers on a SiC(0001) substrate by the molecular-beam-epitaxy method and studied the electronic structure by angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations. The fabricated Sb film shows the (√3×√3)R30º superstructure associated with the formation of ⍺-Sb, and exhibits a semiconducting nature with a band gap of more than 1.
View Article and Find Full Text PDFMater Horiz
January 2025
Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476, Germany.
Two-dimensional transition metal dichalcogenides (2D TMDCs) can be combined with organic semiconductors to form hybrid van der Waals heterostructures. Specially, non-fullerene acceptors (NFAs) stand out due to their excellent absorption and exciton diffusion properties. Here, we couple monolayer tungsten diselenide (ML-WSe) with two well performing NFAs, ITIC, and IT-4F (fluorinated ITIC) to achieve hybrid architectures.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Department of Physics and Astronomy, University of California, Irvine, CA, USA.
Spin-orbit torques enable energy-efficient manipulation of magnetization by electric current and hold promise for applications ranging from non-volatile memory to neuromorphic computing. Here we report the discovery of a giant spin-orbit torque induced by anomalous Hall current in ferromagnetic conductors. This anomalous Hall torque is self-generated as it acts on the magnetization of the ferromagnet that engenders the torque.
View Article and Find Full Text PDFSci Rep
January 2025
Computational Physics Key Laboratory of Sichuan Province, Yibin University, Yibin, China.
The potential energy curves, dipole moments and transition dipole moments of the 14 Λ-S states and 30 Ω states of TlBr cation were performed using the multi-reference configuration interaction method. The Davidson correction and spin-orbit coupling effects were also considered. The spectroscopic properties and transition properties of TlBr cation were reported at the first time.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
High-level multireference configuration interaction plus Davidson correction (MRCI + Q) calculation method was employed to determine the potential energy curves (PECs) of 10 Λ-S states, which come from the first and second dissociation channels of the SbP molecule, as well as 34 Ω states considering the spin-orbit coupling (SOC) effect. By solving the Schrödinger equation for nuclear motion, spectroscopic constants for the ground state XΣ and low-lying excited states were obtained and compared with experimental data. The excellent agreement indicates the reliability of our calculations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!