Salmonella enterica serovar Typhimurium (S. Typhimurium), enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) commandeer the actin cytoskeleton of their host cells as a crucial step in their infectious processes. These pathogens depend on the injection of their own effectors directly into target host cells in order to usurp cellular signaling pathways that lead to morphological actin rearrangements in those cells. Here we show that the PPIase Cyclophilin A (CypA) is a novel component of S. Typhimurium-induced membrane ruffles and functions to restrict bacterial invasion levels, as in cells depleted of CypA, bacterial loads increase. We also demonstrate that CypA requires the EPEC effector Tir as well as pedestal formation for its recruitment to bacterial attachment sites and that its presence at pedestals also holds during EHEC infections. Finally, we demonstrate that CypA is found at lamellipodia; actin-rich structures at the leading edge of motile cells. Our findings further establish CypA as a component of dynamic actin-rich structures formed during bacterial infections and within cells in general. Anat Rec, 301:2086-2094, 2018. © 2018 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ar.23957 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Maladies infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier 34095, France.
Tubulin detyrosination has been implicated in various human disorders and is important for regulating microtubule dynamics. While in most organisms this modification is restricted to α-tubulin, in trypanosomatid parasites, it occurs on both α- and β-tubulin. Here, we show that in , a single vasohibin (LmVASH) enzyme is responsible for differential kinetics of α- and β-tubulin detyrosination.
View Article and Find Full Text PDFPLoS Pathog
January 2025
LPHI, UMR 5294 CNRS/UM-UA15 Inserm, Université de Montpellier, Montpellier, France.
A sustained blood-stage infection of the human malaria parasite P. falciparum relies on the active exit of merozoites from their host erythrocytes. During this process, named egress, the infected red blood cell undergoes sequential morphological events: the rounding-up of the surrounding parasitophorous vacuole, the disruption of the vacuole membrane and finally the rupture of the red blood cell membrane.
View Article and Find Full Text PDFPhysiol Res
December 2024
Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
The global COVID-19 pandemic, caused by SARS-CoV-2, has led to significant morbidity and mortality, with a profound impact on cardiovascular health. This review investigates the mechanisms of SARS-CoV-2's interaction with cardiac tissue, particularly emphasizing the role of the Spike protein and ACE2 receptor in facilitating viral entry and subsequent cardiac complications. We dissect the structural features of the virus, its interactions with host cell receptors, and the resulting pathophysiological changes in the heart.
View Article and Find Full Text PDFAntimicrob Agents Chemother
January 2025
Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
Peptide-based therapeutics are gaining attention for their potential to target various viral and host cell factors. One notable example is Pep19-2.5 (Aspidasept), a synthetic anti-lipopolysaccharide peptide that binds to heparan sulfate proteoglycans (HSPGs) and has demonstrated inhibitory effects against certain bacteria and enveloped viruses.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
The marine ecosystem is characterized by a rich diversity of bacterial hosts and their phages. The propagation of phages is primarily limited by their ability to adsorb to host cells and is further challenged by various bacterial defense mechanisms. To fully realize the potential of phage therapy in aquaculture, a comprehensive understanding of phage-host interactions and their regulation is essential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!