Clustered regularly interspaced short palindromic repeats (CRISPR) are a revolutionary tool based on a bacterial acquired immune response system. CRISPR has gained widespread use for gene editing in a variety of organisms and is an increasingly valuable tool for basic genetic research, with far-reaching implications for medicine, agriculture, and industry. This lab is based on the premise that upper division undergraduate students enrolled in a Life Sciences curriculum must become familiar with cutting edge advances in biotechnology that have significant impact on society. Toward this goal, we developed a new hands-on laboratory exercise incorporating the use of CRISPR-Cas9 and homology directed repair (HDR) to edit two well-characterized genes in the budding yeast, Saccharomyces cerevisiae. The two genes edited in this exercise, Adenine2 (ADE2) and Sterile12 (STE12) affect metabolic and developmental processes, respectively. Editing the premature stop codons in these genes results in clearly identifiable phenotypes that can be assessed by students in a standard laboratory course setting. Making use of this basic eukaryotic model organism facilitates a laboratory exercise that is inexpensive, simple to organize, set up, and present to students. This exercise enables undergraduate students to initiate and follow-up on all stages of the CRISPR gene editing process, from identification of guide RNAs, amplification of an appropriate HDR fragment, and analysis of mutant phenotypes. The organization of this protocol also allows for easy modification, providing additional options for editing any expressed genes within the yeast genome to produce new mutations, or recovery of existing mutants to wild type. © 2018 International Union of Biochemistry and Molecular Biology, 46(6):592-601, 2018.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6615721PMC
http://dx.doi.org/10.1002/bmb.21175DOI Listing

Publication Analysis

Top Keywords

gene editing
12
crispr gene
8
laboratory course
8
undergraduate students
8
laboratory exercise
8
editing
5
crispr
4
editing yeast
4
yeast experimental
4
experimental protocol
4

Similar Publications

Cascade-Responsive Nanoparticles for Efficient CRISPR/Cas9-Based Glioblastoma Gene Therapy.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.

CRISPR/Cas9 (CRISPR, clustered regularly interspaced short palindromic repeats) gene editing technology represents great promise for treating glioblastoma (GBM) due to its potential to permanently eliminate tumor pathogenic genes. Unfortunately, delivering CRISPR to the GBM in a safe and effective manner is challenging. Herein, a glycosylated and cascade-responsive nanoparticle (GCNP) that can effectively cross the blood-brain barrier (BBB) and activate CRISPR/Cas9-based gene editing only in the GBM is designed.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is a life-shortening autosomal recessive disease caused by mutations in the CFTR gene, resulting in functional impairment of the encoded ion channel. F508del mutation, a trinucleotide deletion, is the most frequent cause of CF affecting approximately 80% of persons with cystic fibrosis (pwCFs). Even though current pharmacological treatments alleviate the F508del-CF disease symptoms there is no definitive cure.

View Article and Find Full Text PDF

Focused Ultrasound and Microbubble-Mediated Delivery of CRISPR-Cas9 Ribonucleoprotein to Human Induced Pluripotent Stem Cells.

Mol Ther

January 2025

Department of Biology, Concordia University, 7141 Sherbrooke St. W H4B 1R6, Montreal, Canada; Department of Physics, Concordia University, 7141 Sherbrooke St. W H4B 1R6, Montreal, Canada. Electronic address:

CRISPR-Cas9 ribonucleoproteins (RNPs) have been heavily considered for gene therapy due to their high on-target efficiency, rapid activity and lack of insertional mutagenesis relative to other CRISPR-Cas9 delivery formats. Genetic diseases such as hypertrophic cardiomyopathy currently lack effective treatment strategies and are prime targets for CRISPR-Cas9 gene editing technology. However, current in-vivo delivery strategies for Cas9 pose risks of unwanted immunogenic responses.

View Article and Find Full Text PDF

: Cellular biobanks are of great interest for performing studies finalized in the development of personalized approaches for genetic diseases, including β-thalassemia and sickle cell disease (SCD), important diseases affecting the hematopoietic system. These inherited genetic diseases are characterized by a global distribution and the need for intensive health care. The aim of this report is to present an update on the composition of a cellular Thal-Biobank, to describe its utilization since 2016, to present data on its application in studies on fetal hemoglobin induction and on gene editing, and to discuss its employment as a "unique tool" during and after the COVID-19 pandemic.

View Article and Find Full Text PDF

Background: Proteasomes degrade intracellular proteins. Different proteasome forms were identified. Proteasome inhibitors are used in cancer therapy, and novel drugs directed to specific proteasome forms are developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!