Tautomerisation of simple carbonyl compounds to their enol counterparts on metal surfaces is envisaged to enable an easier route for hydrogenation of the C=O bond in heterogeneously catalyzed reactions. To understand the mechanisms of enol formation and stabilization over catalytically active metal surfaces, we performed a mechanistic study on keto-enol tautomerization of a monocarbonyl compound acetophenon over Pt(111) surface. By employing infrared reflection adsorption spectroscopy in combination with scanning tunneling microscopy, we found that enol can be formed by building a ketone-enol dimer, in which one molecule in the enol form is stabilized through hydrogen bonding to the carbonyl group of the second ketone molecule. Based on the investigations of the co-adsorption behavior of acetophenone and hydrogen, we conclude that keto-enol tautomerization occurs in the intramolecular process and does not involve hydrogen transfer through the surface hypothesized previously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201808453 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!