Autism is a developmental disorder with a neurobiological aetiology. Studies of the autistic brain identified atypical developmental trajectories that may lead to an impaired capacity to modulate electroencephalogram activity during sleep. We assessed the topography and characteristics of non-rapid eye movement sleep electroencephalogram slow waves in 26 boys aged between 6 and 13 years old: 13 with an autism spectrum disorder and 13 typically developing. None of the participants was medicated, intellectually disabled, reported poor sleep, or suffered from medical co-morbidities. Results are derived from a second consecutive night of polysomnography in a sleep laboratory. Slow waves (0.3-4.0 Hz; >75 µV) were automatically detected on artefact-free sections of non-rapid eye movement sleep along the anteroposterior axis in frontal, central, parietal and occipital derivations. Slow wave density (number per minute), amplitude (µV), slope (µV s ) and duration (s) were computed for the first four non-rapid eye movement periods. Slow wave characteristics comparisons between groups, derivations and non-rapid eye movement periods were assessed with three-way mixed ANOVAs. Slow wave density, amplitude, slope and duration were higher in anterior compared with most posterior derivations in both groups. Children with autism spectrum disorder showed lower differences in slow waves between recording sites along the anteroposterior axis than typically developing children. These group differences in the topography of slow wave characteristics were stable across the night. We propose that slow waves during non-rapid eye movement sleep could be an electrophysiological marker of the deviant cortical maturation in autism linked to an atypical functioning of thalamo-cortical networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jsr.12775 | DOI Listing |
Neurogastroenterol Motil
January 2025
Division of Gastroenterology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA.
Background: Gastric dysmotility and gastric slow wave dysrhythmias have been well documented in patients with diabetes. However, little is known on the effect of hyperglycemia on small intestine motility, such as intestinal slow waves, due to limited options in measuring its activity. Moreover, food intake and digestion process have been reported to alter the small intestine motility in normal rats, but their roles in that of diabetic rats remains unknown.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
Unveiling the nonlinear interactions between terahertz (THz) electromagnetic waves and free carriers in two-dimensional materials is crucial for the development of high-field and high-frequency electronic devices. Herein, we investigate THz nonlinear transport dynamics in a monolayer graphene/MoS heterostructure using time-resolved THz spectroscopy with intense THz pulses as the probe. Following ultrafast photoexcitation, the interfacial charge transfer establishes a nonequilibrium carrier redistribution, leaving free holes in the graphene and trapping electrons in the MoS.
View Article and Find Full Text PDFCell Calcium
December 2024
Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA. Electronic address:
Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.
View Article and Find Full Text PDFAnn Indian Acad Neurol
January 2025
Department of Clinical Psychology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.
Background And Objectives: Psychosis is one of the major neuropsychiatric non-motor symptoms of Parkinson's disease (PD). Prolonged latency and decreased amplitude of the P300 event-related potential (ERP) is a potential neurophysiologic biomarker of deeper neurocognitive deficits in PD. We aimed to characterize electroencephalogram (EEG)/ERP parameters in PD patients with and without psychosis (PDP and PDNP, respectively), and to determine if such measures could act as endophenotypes for PD-associated psychosis (PDP).
View Article and Find Full Text PDFJ Sleep Res
December 2024
Vita-Salute San Raffaele University, Department of Clinical Neurosciences, Neurology-Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!