Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Proton minibeam radiation therapy (pMBRT) is an innovative approach that combines the advantages of minibeam radiation therapy with the more precise ballistics of protons to further reduce the side effects of radiation. One of the main challenges of this approach is the generation of very narrow proton pencil beams with an adequate dose-rate to treat patients within a reasonable treatment time (several minutes) in existing clinical facilities. The aim of this study was to demonstrate the feasibility of implementing pMBRT by combining the pencil beam scanning (PBS) technique with the use of multislit collimators. This proof of concept study of pMBRT with a clinical system is intended to guide upcoming biological experiments.
Methods: Monte Carlo simulations (TOPAS v3.1.p2) were used to design a suitable multislit collimator to implement planar pMBRT for conventional pencil beam scanning settings. Dose distributions (depth-dose curves, lateral profiles, Peak-to-Valley Dose Ratio (PVDR) and dose-rates) for different proton beam energies were assessed by means of Monte Carlo simulations and experimental measurements in a water tank using commercial ionization chambers and a new p-type silicon diode, the IBA RAZOR. An analytical intensity-modulated dose calculation algorithm designed to optimize the weight of individual Bragg peaks composing the field was also developed and validated.
Results: Proton minibeams were then obtained using a brass multislit collimator with five slits measuring 2 cm × 400 μm in width with a center-to-center distance of 4 mm. The measured and calculated dose distributions (depth-dose curves and lateral profiles) showed a good agreement. Spread-out Bragg peaks (SOBP) and homogeneous dose distributions around the target were obtained by means of intensity modulation of Bragg peaks, while maintaining spatial fractionation at shallow depths. Mean dose-rates of 0.12 and 0.09 Gy/s were obtained for one iso-energy layer and a SOBP conditions in the presence of multislit collimator.
Conclusions: This study demonstrates the feasibility of implementing pMBRT on a PBS system. It also confirms the reliability of RAZOR detector for pMBRT dosimetry. This newly developed experimental methodology will support the design of future preclinical research with pMBRT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.13209 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!