Winter common wheat (Triticum aestivum L.) plants were cultivated on petroleum products contaminated soils with and without using biopreparation ZB-01. We determined the impact of soil contamination with petrol, diesel fuel and engine oil on selected antioxidant enzymes and the levels of antioxidants in the leaves of winter wheat. The impact of petroleum products on selected morphological characteristics of the plants, levels of nutrients and heavy metals was also assessed. Winter wheat was relatively resistant to soil contamination with petroleum products, and did not show a significant impact on the morphological characteristics of the plants. The levels of nutrients and heavy metals in the plants depended on the type of pollutant and the analyzed component.‬ Biopreparation ZB-01 generally resulted in an increase in calcium levels in the plants.‬ The winter wheat plants growing in soil contaminated with engine oil were characterized by higher levels of zinc, lead, manganese and cadmium than the control plants.‬ Biopreparation applied to the soil contaminated with petrol resulted in a slight increase in the levels of lead and zinc in the plants.‬ The petroleum products affected the activity of antioxidant enzymes and the levels of antioxidants in the plants.‬ The general markers of soil contaminated with diesel fuel and petrol were POD activity and proline levels. Use of the ZB-01 biopreparation caused an increase in the levels of proline and -SH groups and an increase in the levels of carbon and calcium in the plants and had no effect on the morphological characteristics of plants.‬.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267654PMC
http://dx.doi.org/10.1007/s10646-018-1988-3DOI Listing

Publication Analysis

Top Keywords

petroleum products
16
winter wheat
12
morphological characteristics
12
soil contaminated
12
increase levels
12
levels
10
triticum aestivum
8
aestivum plants
8
biopreparation zb-01
8
soil contamination
8

Similar Publications

The strong solid-liquid interaction leads to the complicated occurrence characteristics of shale oil. However, the solid-liquid interface interaction and its controls of the occurrence state of shale oil are poorly understood on the molecular scale. In this work, the adsorption behavior and occurrence state of shale oil in pores of organic/inorganic matter under reservoir conditions were investigated by using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Understanding the interfacial interaction mechanisms between oil and minerals is of vital importance in the applications of petroleum production and environmental protection. In this work, the interactions of dodecane with mica and calcite in aqueous media were investigated by using the drop probe technique based on atomic force microscopy. For the dodecane-mica interactions, the electrical double layer (EDL) repulsion dominated in 10 mM NaCl solution, and a higher pH facilitated the detachment of dodecane.

View Article and Find Full Text PDF

Unveiling of Hydrogen Spillover Mechanisms on Tungsten Oxide Surfaces.

J Am Chem Soc

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Hydrogen spillover is an important process in catalytic hydrogenation reactions, facilitating H activation and modulating surface chemistry of reducible oxide catalysts. This study focuses on the unveiling of platinum-induced hydrogen spillover on monoclinic tungsten trioxide (γ-WO), employing ambient pressure X-ray photoelectron spectroscopy, density functional theory calculations and microkinetic modeling to investigate the dynamic evolution of surface states at varied temperatures. At room temperature, hydrogen spillover results in the formation of W and hydrogen intermediates (hydroxyl species and adsorbed water), facilitated by Pt metal clusters.

View Article and Find Full Text PDF

In this systematic review, advancements in plastic recycling technologies, including mechanical, thermolysis, chemical and biological methods, are examined. Comparisons among recycling technologies have identified current research trends, including a focus on pretreatment technologies for waste materials and the development of new organic chemistry or biological techniques that enable recycling with minimal energy consumption. Existing environmental and economic studies are also compared.

View Article and Find Full Text PDF

Enantioselective construction of silicon-stereogenic vinylsilanes from simple alkenes.

Nat Commun

January 2025

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University 94 Weijin Road, Tianjin, China.

The diverse utility of acyclic vinylsilanes has driven the interest in the synthesis of enantioenriched vinylsilanes bearing a Si-stereogenic center. However, the predominant approaches for catalytic asymmetric generation of Si-stereogenic vinylsilanes have mainly relied on transition metal-catalyzed reactions of alkynes with different silicon sources. Here we successfully realize the enantioselective synthesis of linear silicon-stereogenic vinylsilanes with good yields and enantiomeric ratios from simple alkenes under rhodium catalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!