With the growth of the population, access to medical care is in high demand, and queues are becoming longer. The situation is more critical when it concerns serious diseases such as cancer. The primary problem is inefficient management of patients rather than a lack of resources. In this work, we collaborate with the Centre Intégré de Cancérologie de Laval (CICL). We present a data-driven study based on a nonblock approach to patient appointment scheduling. We use data mining and regression methods to develop a prediction model for radiotherapy treatment duration. The best model is constructed by a classification and regression tree; its accuracy is 84%. Based on the predicted duration, we design new workday divisions, which are evaluated with various patient sequencing rules. The results show that with our approach, 40 additional patients are treated daily in the cancer center, and a considerable improvement is noticed in patient waiting times and technologist overtime.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10729-018-9459-1DOI Listing

Publication Analysis

Top Keywords

prediction model
8
data-driven study
8
patient
4
patient scheduling
4
scheduling based
4
based service-time
4
service-time prediction
4
model data-driven
4
study radiotherapy
4
radiotherapy center
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!