High-frequency pulsed electron-electron double resonance spectroscopy on DNA duplexes using trityl tags and shaped microwave pulses.

Phys Chem Chem Phys

Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry, Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany.

Published: November 2018

Accurate distances between two trityl paramagnetic tags site-specifically attached to DNA duplexes were measured by pulsed electron-electron double resonance spectroscopy at 180 and 260 GHz microwave frequencies. Up to a threefold increase in the sensitivity of 260 GHz PELDOR measurements was achieved by using shaped broad-band microwave pulses.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp03951hDOI Listing

Publication Analysis

Top Keywords

pulsed electron-electron
8
electron-electron double
8
double resonance
8
resonance spectroscopy
8
dna duplexes
8
microwave pulses
8
260 ghz
8
high-frequency pulsed
4
spectroscopy dna
4
duplexes trityl
4

Similar Publications

Plasma membranes are known to segregate into liquid disordered and ordered nanoscale phases, the latter being called lipid rafts. The structure, lipid composition, and function of lipid rafts have been the subject of numerous studies using a variety of experimental and computational methods. Double electron-electron resonance (DEER, also known as PELDOR) is a member of the pulsed dipole EPR spectroscopy (PDS) family of techniques, allowing the study of nanoscale distances between spin-labeled molecules.

View Article and Find Full Text PDF

Terahertz Saturable Absorption across Charge Separation in Photoexcited Monolayer Graphene/MoS Heterostructure.

J Phys Chem Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.

Unveiling the nonlinear interactions between terahertz (THz) electromagnetic waves and free carriers in two-dimensional materials is crucial for the development of high-field and high-frequency electronic devices. Herein, we investigate THz nonlinear transport dynamics in a monolayer graphene/MoS heterostructure using time-resolved THz spectroscopy with intense THz pulses as the probe. Following ultrafast photoexcitation, the interfacial charge transfer establishes a nonequilibrium carrier redistribution, leaving free holes in the graphene and trapping electrons in the MoS.

View Article and Find Full Text PDF

Magic-NOVEL: Suppressing electron-electron coupling effects in pulsed DNP.

J Chem Phys

January 2025

Center for Quantum and Topological Systems, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.

Pulsed dynamic nuclear polarization (DNP) enhances the nuclear magnetic resonance sensitivity by coherently transferring electron spin polarization to dipolar coupled nuclear spins. Recently, many new pulsed DNP techniques such as NOVEL, TOP, XiX, TPPM, and BEAM have been introduced. Despite significant progress, numerous challenges remain unsolved.

View Article and Find Full Text PDF

Insights into Folding and Molecular Environment of Lyophilized Proteins Using Pulsed Electron Paramagnetic Resonance Spectroscopy.

Mol Pharm

January 2025

Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany.

There is still an insufficient understanding of how the characteristics of protein drugs are maintained in the solid state of lyophilizates, including aspects such as protein distances, local environment, and structural preservation. To this end, we evaluated protein folding and the molecules' nearest environment by electron paramagnetic resonance (EPR) spectroscopy. Double electron-electron resonance (DEER) probe distances of up to approximately 200 Å and is suitable to investigate protein folding, local concentration, and aggregation, whereas electron spin echo envelope modulation (ESEEM) allows the study of the near environment within approximately 10 Å of the spin label.

View Article and Find Full Text PDF

Rapid Analysis of DEER Signals Including Short Distances.

J Phys Chem Lett

January 2025

Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14850, United States.

Double electron electron resonance (DEER) spectroscopy is an important technique to measure distance distributions () for studying protein structures and protein-protein interactions. DEER data analysis can at times become challenging due to the lack of a detailed analytical signal expression or numerical methods with rapid computation time. We have derived an analytical expression κ, which includes both the pseudo-secular dipolar coupling (PSDC) and the finite pulse effects, especially important for shorter distances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!