Benign prostate hyperplasia (BPH) is a male reproductive disease that has gained increasing importance in recent years. The present study investigated whether Pycnogenol® (PYC), a standardized French maritime pine bark extract, could prevent BPH induced by testosterone propionate (TP) in rats. Male Sprague-Dawley rats were randomly divided into five groups of six rats. One group was used as a normal control rats and the other groups received subcutaneous injections of TP for 4 weeks to induce BPH. In the two treatment groups, PYC (20 or 40 mg/kg) was administered daily for 4 weeks by oral gavage concurrently with the induction of TP. All rats were sacrificed at the scheduled termination time, the prostates were weighed, and histopathologic examinations were conducted. Dihydrotestosterone (DHT) levels in serum and the prostate were measured, and the expression of proliferating cell nuclear antigen (PCNA) and Ki-67 proteins was investigated. BPH-treated animals showed increases in the relative weight of the prostate, higher concentrations of DHT in serum and the prostate, and higher expression of PCNA and Ki-67 in the prostate; in contrast, PYC-treated animals had significant reductions in these factors compared with the BPH animals. These findings indicated that PYC inhibited the development of BPH and that this was closely associated with a reduction in DHT concentration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170226 | PMC |
http://dx.doi.org/10.5625/lar.2018.34.3.111 | DOI Listing |
Molecules
December 2024
Department of Physical Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163/165, 90-236 Łódź, Poland.
Extracts from natural waste like bark or leaves are great sources of phytochemicals, which contain functional groups (hydroxyl, carboxylic, vinyl, allyl) attractive in terms of polymer synthesis. In this study, the synthesis of epoxy with an extract of Scots pine bark as a natural co-hardener was evaluated. Ultraviolet-visible (UV-Vis) spectroscopy was used for the identification of phytochemicals with conjugated dienes and quantification of TPC.
View Article and Find Full Text PDFBiol Futur
January 2025
Physics Department, Faculty of Science, Istanbul University, Istanbul, Türkiye.
Tree bark is an important natural polymer for sound absorption. The main components in the bark of different tree species are polymers with high molecular weight such as cellulose, hemicellulose, and lignin. The aim of this study is to determine the noise reduction coefficient (NRC), lignin, alcohol-benzene solubility (ABS), carbon (C), and nitrogen (N) contents in samples taken from the bark of different tree species-black locust (Robinia pseudoacacia), narrow-leaved ash (Fraxinus angustifolia), stone pine (Pinus pinea), silver lime (Tilia tomentosa), sweet chestnut (Castanea sativa), sessile oak (Quercus petraea), and maritime pine (Pinus pinaster) and to investigate the relationship between these chemical properties and sound absorption measurements.
View Article and Find Full Text PDFInsects
November 2024
Korea National Arboretum, Pocheon-si 11186, Gyeonggi-do, Republic of Korea.
Pine wilt disease, caused by the pinewood nematode, affects , Siebold and Zucc., and Parl. in South Korea.
View Article and Find Full Text PDFFoods
December 2024
Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary.
Grape seed extract (GSE), one of the world's bestselling dietary supplements, is prone to frequent adulteration with chemically similar compounds. These frauds can go unnoticed within the supply chain due to the use of unspecific standard analytical methods for quality control. This research aims to develop a near-infrared spectroscopy (NIRS) method for the rapid and non-destructive quantitative evaluation of GSE powder in the presence of multiple additives.
View Article and Find Full Text PDFEnviron Res
January 2025
Chemical Process Engineering, P.O. Box 4300, FIN-90014 University of Oulu, Oulu, Finland.
A low-cost and renewable magnetite-pine bark (MPB) sorbent was evaluated in continuous-flow systems for the removal of various pharmaceuticals from municipal wastewater effluent following membrane bioreactor (MBR) treatment. A 33-day small-scale column test (bed volume: 791 cm) was conducted using duplicate columns of biochar (BC, Novocarbo) and activated carbon (AC, ColorSorb) as reference for two columns of BC and MPB in order to compare the efficiency of AC and MPB. After the small-scale column test, the pharmaceutical concentrations were generally below the detection limit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!