Heat-stress triggers MAPK crosstalk to turn on the hyperosmotic response pathway.

Sci Rep

Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.

Published: October 2018

Cells make decisions based on a combination of external and internal signals. In yeast, the high osmolarity response (HOG) is a mitogen-activated protein kinase (MAPK) pathway that responds to a variety of stimuli, and it is central to the general stress response. Here we studied the effect of heat-stress (HS) on HOG. Using live-cell reporters and genetics, we show that HS promotes Hog1 phosphorylation and Hog1-dependent gene expression, exclusively via the Sln1 phosphorelay branch, and that the strength of the activation is larger in yeast adapted to high external osmolarity. HS stimulation of HOG is indirect. First, we show that HS causes glycerol loss, necessary for HOG activation. Preventing glycerol efflux by deleting the glyceroporin FPS1 or its regulators RGC1 and ASK10/RGC2, or by increasing external glycerol, greatly reduced HOG activation. Second, we found that HOG stimulation by HS depended on the operation of a second MAPK pathway, the cell-wall integrity (CWI), a well-known mediator of HS, since inactivating Pkc1 or deleting the MAPK SLT2 greatly reduced HOG activation. Our data suggest that the main role of the CWI in this process is to stimulate glycerol loss. We found that in yeast expressing the constitutively open channel mutant (Fps1-Δ11), HOG activity was independent of Slt2. In summary, we suggest that HS causes a reduction in turgor due to the loss of glycerol and the accompanying water, and that this is what actually stimulates HOG. Thus, taken together, our findings highlight a central role for Fps1, and the metabolism of glycerol, in the communication between the yeast MAPK pathways, essential for survival and reproduction in changing environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6181916PMC
http://dx.doi.org/10.1038/s41598-018-33203-6DOI Listing

Publication Analysis

Top Keywords

hog activation
12
hog
9
mapk pathway
8
glycerol loss
8
greatly reduced
8
reduced hog
8
glycerol
6
mapk
5
heat-stress triggers
4
triggers mapk
4

Similar Publications

Fungi can remarkably sense and adapt to various extracellular stimuli and stress conditions. Oxidative stress, which results from an imbalance between reactive oxygen species production and antioxidant defenses, leads to cellular damage and death. In , oxidative stress is managed by a complex antioxidant system, including thioredoxins, glutathione, catalases, peroxidases, and superoxide dismutase, with glutathione playing a crucial role.

View Article and Find Full Text PDF

Regulation of Catalase Expression and Activity by Hog1 in the Halotolerant Yeast Under Saline and Oxidative Conditions.

J Fungi (Basel)

October 2024

Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico.

Efficient transcriptional regulation of the stress response is critical for microorganism survival. In yeast, stress-related gene expression, particularly for antioxidant enzymes like catalases, mitigates reactive oxygen species such as hydrogen peroxide (HO), preventing cell damage. The halotolerant yeast shows oxidative stress tolerance, largely due to high catalase activity from and genes.

View Article and Find Full Text PDF

Hansenula mrakii killer toxin resistant gene 1 (HKR1) is an intronless, single-exon gene that encodes Hkr1, the signaling mucin of the budding yeast Saccharomyces cerevisiae. HKR1 overexpression confers S. cerevisiae cells with resistance to the HM-1 killer toxin produced by the killer yeast Hansenula mrakii (currently known as Cyberlindnera mrakii).

View Article and Find Full Text PDF

Modified lipoprotein-induced sFlt1 production in human placental trophoblasts is mediated by protein kinase C.

Eur J Pharmacol

January 2025

Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, UK. Electronic address:

Background: Preeclampsia is prevalent in women with diabetes, but the mechanism is unclear. We previously found that oxidized, glycated lipoproteins robustly upregulated soluble fms-like tyrosine kinase-1 (sFlt1), a key mediator of preeclampsia. Here, we determined the role of protein kinase C (PKC) and its subtypes in sFlt1 regulation in placental trophoblasts, and whether this mechanism might mediate the effect of modified lipoproteins.

View Article and Find Full Text PDF

Analyses of the gut microbial composition of domestic pig louse Haematopinus suis.

Microb Pathog

December 2024

Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China. Electronic address:

Haematopinus suis is an obligatory ectoparasite of the domestic pig, serving as a vector of several swine pathogens and posing great threats to the pig industry. The gut microbiome of lice is thought of an important mediator of their healthy physiology. However, there is a great paucity of lice-associated microbial communities' structure and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!