The Gag protein of avian sarcoma virus (ASV) lacks an -myristoyl (myr) group, but contains structural domains similar to those of HIV-1 Gag. Similarly to HIV-1, ASV Gag accumulates on the plasma membrane (PM) before egress; however, it is unclear whether the phospholipid PI(4,5)P binds directly to the matrix (MA) domain of ASV Gag, as is the case for HIV-1 Gag. Moreover, the role of PI(4,5)P in ASV Gag localization and budding has been controversial. Here, we report that substitution of residues that define the PI(4,5)P-binding site in the ASV MA domain (reported in an accompanying paper) interfere with Gag localization to the cell periphery and inhibit the production of virus-like particles (VLPs). We show that co-expression of Sprouty2 (Spry2) or the pleckstrin homology domain of phospholipase Cδ (PH-PLC), two proteins that bind PI(4,5)P, affects ASV Gag trafficking to the PM and budding. Replacement of the N-terminal 32 residues of HIV-1 MA, which encode its N-terminal myr signal and its PI(4,5)P-binding site, with the structurally equivalent N-terminal 24 residues of ASV MA created a chimera that localized at the PM and produced VLPs. In contrast, the homologous PI(4,5)P-binding signal in ASV MA could target HIV-1 Gag to the PM when substituted, but did not support budding. Collectively, these findings reveal a basic patch in both ASV and HIV-1 Gag capable of mediating PM binding and budding for ASV but not for HIV-1 Gag. We conclude that PI(4,5)P is a strong determinant of ASV Gag targeting to the PM and budding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6295721 | PMC |
http://dx.doi.org/10.1074/jbc.RA118.003947 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!