Background: With the exponential growth in available biomedical data, there is a need for data integration methods that can extract information about relationships between the data sets. However, these data sets might have very different characteristics. For interpretable results, data-specific variation needs to be quantified. For this task, Two-way Orthogonal Partial Least Squares (O2PLS) has been proposed. To facilitate application and development of the methodology, free and open-source software is required. However, this is not the case with O2PLS.
Results: We introduce OmicsPLS, an open-source implementation of the O2PLS method in R. It can handle both low- and high-dimensional datasets efficiently. Generic methods for inspecting and visualizing results are implemented. Both a standard and faster alternative cross-validation methods are available to determine the number of components. A simulation study shows good performance of OmicsPLS compared to alternatives, in terms of accuracy and CPU runtime. We demonstrate OmicsPLS by integrating genetic and glycomic data.
Conclusions: We propose the OmicsPLS R package: a free and open-source implementation of O2PLS for statistical data integration. OmicsPLS is available at https://cran.r-project.org/package=OmicsPLS and can be installed in R via install.packages("OmicsPLS").
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182835 | PMC |
http://dx.doi.org/10.1186/s12859-018-2371-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!