A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reforestation of agricultural land in the tropics: The relative contribution of soil, living biomass and debris pools to carbon sequestration. | LitMetric

Reforestation of agricultural land in the tropics: The relative contribution of soil, living biomass and debris pools to carbon sequestration.

Sci Total Environ

Department of Agriculture and Fisheries, Queensland Government, University of the Sunshine Coast, Sippy Downs 4556, Australia; Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs 4556, Australia.

Published: February 2019

Tropical regions of the world experience high rates of land-use change and this has a major influence on terrestrial carbon (C) pools and the global C cycle. We assessed land-use change from agriculture to reforested plantings (with endemic species), up to 33 years of age, using 10 paired sites in the wet tropics, Australia. We determined the impacts on 0-50 cm below-ground C (soil organic C (SOC), charcoal C, humic organic C, particulate organic C, resistant organic C), C stored in roots (fine and coarse), C stored in living above-ground biomass and debris C pools. Reforested areas accumulated ecosystem C at a rate of 7.4 Mg ha yr. Reforestation plantings contained, on average, 2.3 times more ecosystem C than agricultural areas (102 Mg ha and 233 Mg ha, respectively). Most of the C accumulation was in living above-ground and below-ground biomass (60 and 30%, respectively) with a smaller amount in debris pools (16%). Apart from C in roots, soil C accumulation was not obvious across sites ranging from 8 to 33 years since reforestation, relative to the agricultural baseline. Differences in SOC (and associated SOC pools) to a depth of 50 cm, did exist between reforested areas and adjacent agriculture at some sites, however there was not a consistent trend in SOC associated with reforestation. Local site-based factors (e.g. soil texture and mineralogy, land-use history and microbial activity) appear to have a strong influence on the direction of the change in SOC. While reforestation in the tropics has great potential to accumulate C in biomass in living vegetation, and debris pools, it is likely to take approximately 50 years before C stocks of reforested areas resemble natural ecosystems. Accumulation of SOC through reforestation is difficult to achieve, highlighting the need to conserve carbon pools in remnant forests in the tropics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.08.351DOI Listing

Publication Analysis

Top Keywords

debris pools
16
reforested areas
12
biomass debris
8
land-use change
8
carbon pools
8
living above-ground
8
soc associated
8
soc reforestation
8
pools
7
reforestation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!