AI Article Synopsis

  • Psoriasis is an autoimmune skin condition that can cause discomfort and social withdrawal, and is treated with various therapies, including adalimumab, an anti-TNF antibody introduced in 2008.
  • The research involved testing adalimumab on normal human dermal fibroblasts to study its effects on caspase genes and regulatory micro-RNAs over different time intervals, followed by ex-vivo studies on psoriatic patients' blood.
  • Results showed that adalimumab changed the activity of caspase-related genes and micro-RNAs in vitro, but did not significantly alter the expression of caspase-6 in patients’ blood after treatment.

Article Abstract

Background/aims: Psoriasis, an autoimmune diseases of the skin, characterized by patches of abnormal/inflammed skin, although not usually life-threatening, it causes severe discomfort, esthetic impairments, and may lead to impaired social functions and social withdrawal. Besides UV-phototherapy, various anti-inflammatory treatments are applied, depending on the severity of symptoms. In 2008, adalimumab (fully humanized human anti-TNF antibody) was launched for the treatment of psoriasis. In the quest to better understand the pathomechanism of adalimumab's therapeutic effects, and the acquired resistance to the drug, we have investigated how its administration affect the regulation of the expression of selected caspases, including those activated by inflammosome.

Methods: The research was initially carried out on normal human dermal fibroblasts (NHDF) treated with adalimumab for 2, 8 and 24 hours in vitro. Then, expression profile of genes encoding caspases and their regulatory micro-RNAs was determined with the use of oligonucleotide microarray. The validation of the microarray results was carried out by qRT-PCR. The in vitro study was followed by ex-vivo investigation of adalimumab's effects on the expression of caspase-6 in blood of the psoriatic patients. The samples were collected before, and 2 hours after adalimumab's administration and the analysis was determined by qRT-PCR.

Results: The result of the analysis indicated that introduction of adalimumab to the NHDF culture resulted in the change of the transcription activity of genes encoding caspases and genes encoding miRNAs. The analysis revealed 5 different miRNA molecules regulating the expression of: CASP2, CASP3 and CASP6. There were no statistically significant differences in the expression of gene encoding caspase-6 in the patients' blood before and 2 hours after the anti-TNF drug administration.

Conclusion: We have found that adalimumab administration affects caspases expression, thus they may be used as molecular markers for monitoring the therapy with the use of an anti-TNF drugs, including adalimumab. It is likely that the mechanisms responsible for changed expression profiles of genes encoding caspase-2,-3, and -6, may be caused by the upregulation of the respective microRNA molecules. Increased expression of genes encoding specific caspases may induce inflammatory processes, as well as trigger apoptosis. Furthermore, the proapoptotic activity of caspases may be enhanced by miRNA molecules, which exhibit proapoptotic function. The overexpression of such miRNAs was observed in our study.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000494166DOI Listing

Publication Analysis

Top Keywords

genes encoding
20
expression
9
expression profile
8
selected caspases
8
caspases regulatory
8
encoding caspases
8
mirna molecules
8
caspases
7
encoding
6
adalimumab
5

Similar Publications

Gammaherpesviruses are oncogenic pathogens that establish lifelong infections. There are no FDA-approved vaccines against Epstein-Barr virus or Kaposi sarcoma herpesvirus. Murine gammaherpesvirus-68 (MHV68) infection of mice provides a system for investigating gammaherpesvirus pathogenesis and testing vaccine strategies.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA gamma herpesvirus. Like other herpesviruses, KSHV establishes a latent infection with limited gene expression, while KSHV occasionally undergoes the lytic replication phase, which produces KSHV progenies and infects neighboring cells. KSHV genome encodes 80+ open reading frames.

View Article and Find Full Text PDF

Isolation and Characterization of a Lytic Phage PaTJ Against .

Viruses

November 2024

Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China.

is a major global threat to human health, and phage therapy has emerged as a promising strategy for treating infections caused by multidrug-resistant pathogens. In this study, we isolated and characterized a lytic phage, PaTJ, from wastewater. PaTJ belongs to the phage family , and is featured by short latency (30 min) and large burst size (10 PFU per infected cell).

View Article and Find Full Text PDF

Herpes simplex virus type 1 (HSV-1) acyclovir (ACV) resistance is acquired by mutations in the viral thymidine kinase (TK) or DNA polymerase (DNApol) genes. We previously obtained an ACV-resistant clone (HSV-1_VZV_TK_clone α) by sequential passages of HSV-1_VZV-TK, a recombinant virus which lacked its endogenous TK activity and instead expressed the varicella-zoster virus (VZV) TK ectopically. HSV-1_VZV_TK_clone α had been generated using an HSV-1_BAC in the presence of increasing concentrations of ACV.

View Article and Find Full Text PDF

Identification and Functional Analysis of the Gene Conferring Resistance to Late Blight () in Tomato.

Plants (Basel)

December 2024

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Late blight is a destructive disease affecting tomato production. The identification and characterization of resistance (R) genes are critical for the breeding of late blight-resistant cultivars. The incompletely dominant gene confers resistance against the race T of in tomatoes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!