Microglia regulate synaptic circuit remodeling and phagocytose synaptic material in the healthy brain; however, the mechanisms directing microglia to engulf specific synapses and avoid others remain unknown. Here, we demonstrate that an innate immune signaling pathway protects synapses from inappropriate removal. The expression patterns of CD47 and its receptor, SIRPα, correlated with peak pruning in the developing retinogeniculate system, and mice lacking these proteins exhibited increased microglial engulfment of retinogeniculate inputs and reduced synapse numbers in the dorsal lateral geniculate nucleus. CD47-deficient mice also displayed increased functional pruning, as measured by electrophysiology. In addition, CD47 was found to be required for neuronal activity-mediated changes in engulfment, as microglia in CD47 knockout mice failed to display preferential engulfment of less active inputs. Taken together, these results demonstrate that CD47-SIRPα signaling prevents excess microglial phagocytosis and show that molecular brakes can be regulated by activity to protect specific inputs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6314207 | PMC |
http://dx.doi.org/10.1016/j.neuron.2018.09.017 | DOI Listing |
J Alzheimers Dis
January 2025
Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China.
Background: Our previous studies have established that the broad-spectrum anti-epileptic drug lamotrigine (LTG) confers protection against cognitive impairments, synapse and nerve cell damage, as well as characteristic neuropathologies in APP/PS1 mice, a mouse model of Alzheimer's disease (AD). However, the precise molecular mechanisms responsible for this protective effect induced by LTG remain largely elusive.
Objective: In this study, we aimed to investigate the mechanisms underlying the beneficial effects of LTG against AD.
Neurol Res Int
January 2025
Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico.
Alpha-synuclein (ASyn), a marker of Parkinson's disease (PD) and other neurodegenerative processes, plays pivotal roles in neuronal nuclei and synapses. ASyn and its phosphorylated form at Serine 129 (p-ASyn) are involved in DNA protection and repair, processes altered in aging, neurodegeneration, and cancer. To analyze the localization of p-ASyn in skin biopsies of PD patients and melanoma.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Ministry of Education, 100081, Beijing, China.
Recently, the biologically inspired intelligent artificial visual neural system has aroused enormous interest. However, there are still significant obstacles in pursuing large-scale parallel and efficient visual memory and recognition. In this study, we demonstrate a 28 × 28 synaptic devices array for the artificial visual neuromorphic system, within the size of 0.
View Article and Find Full Text PDFMajor depressive disorder (MDD) is a common mood condition affecting multiple brain regions and cell types. Changes in astrocyte function contribute to depressive-like behaviors. However, while neuronal mechanisms driving MDD have been studied in some detail, molecular mechanisms by which astrocytes promote depression have not been extensively explored.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
January 2025
School of Health and Biomedical Sciences, RMIT University, 220 3-5 Plenty Road, Bundoora VIC 3082, Australia. Electronic address:
Alzheimer's Disease (AD) is a chronic neurodegenerative disorder characterized by the accumulation of toxic amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) of tau protein in the brain. Microglia, key immune cells of the central nervous system, play an important role in AD development and progression, primarily through their responses to Aβ and NFTs. Initially, microglia can clear Aβ, but in AD, chronic activation overwhelms protective mechanisms, leading to sustained neuroinflammation that enhances plaque toxicity, setting off a damaging cycle that affects neurons, astrocytes, cerebral vasculature, and other microglia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!