We demonstrate a simple method to create a variety of silica-based colloidal molecules through the covalent assembly of site-specifically functionalized patchy nanoparticles with complementary nanospheres. Colloidal analogues of BeBr , BBr and CBr are obtained from sp-, sp - and sp -like particles, while Br O and NBr analogues can be fabricated by varying the relative amounts of both colloidal precursors. We also show that it is possible to attach covalently silica nanospheres of various sizes to one central patchy nanoparticle, which leads to the formation of more complex colloidal molecules, including chiral ones. The possibility to easily extend the strategy to other colloidal precursors which can serve as satellites, for example, ellipsoidal polymer particles or metallic nanoparticles, opens the way to a rich variety of new colloidal analogues of atoms which could serve as building blocks of next generation materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201809895DOI Listing

Publication Analysis

Top Keywords

colloidal molecules
12
colloidal analogues
8
colloidal precursors
8
colloidal
7
molecules valence-endowed
4
valence-endowed nanoparticles
4
nanoparticles covalent
4
covalent chemistry
4
chemistry demonstrate
4
demonstrate simple
4

Similar Publications

Lignocellulose nanofiber-enhanced hydrogel electrolytes with lignin-Al in metal-based neutral deep eutectic solvent for flexible supercapacitors.

J Colloid Interface Sci

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037 China. Electronic address:

The mechanical flexibility and high conductivity of hydrogel electrolytes are crucial for their application in supercapacitors. In this study, we developed hydrogel electrolyte based on lignocellulose nanofibers (LCNFs) through nanofibrillation and self-catalytic gelation in a glycerinum/choline chloride/aluminum chloride hexahydrate (Gly/ChCl/AlCl·6HO) metal-based neutral deep eutectic solvent (DES) system. The lignin-Al self-catalytic mechanism offered an eco-friendly and sustainable method for synthesizing hydrogel electrolytes, while enhancing their ionic conductivity.

View Article and Find Full Text PDF

The exploration of pure organic ultra-long room temperature phosphorescence (RTP) materials has emerged as a research hotspot in recent years. Herein, a simple strategy for fabricating long-afterglow polymer aerogels with three-dimensional ordered structures and environmental monitoring capabilities is proposed. Based on the non-covalent interactions between pectin (PC) and melamine formaldehyde (MF), a composite aerogel (PCMF@phenanthrene) (PCMF@PA) doped with phosphorescent organic small molecules was constructed.

View Article and Find Full Text PDF

Functional gold nanoparticles have emerged as a cornerstone in targeted drug delivery, imaging, and biosensing. Their stability, distribution, and overall performance in biological systems are largely determined by their interactions with molecules in biological fluids as well as the biomolecular layers they acquire in complex environments. However, real-time tracking of how biomolecules attach to colloidal nanoparticles, a critical aspect for optimizing nanoparticle function, has proven to be experimentally challenging.

View Article and Find Full Text PDF

Monodisperse and colloidally stable magnetic iron oxide nanoparticles have been developed for diverse biotechnology applications. Although promising for the adsorption of organic molecules, the low density of adsorption sites in these nanoparticles has been a significant challenge. In this study, an optimized factorial design with response surface methodology (RSM) was employed to produce small Superparamagnetic Iron Oxide Nanoparticles (SPIONs) stabilized with tetraethoxysilane (TEOS).

View Article and Find Full Text PDF

Water-regulated viscosity-plasticity phase transitions in a peptide self-assembled muscle-like hydrogel.

Nat Commun

January 2025

Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang Province, China.

The self-assembly of small molecules through non-covalent interactions is an emerging and promising strategy for building dynamic, stable, and large-scale structures. One remaining challenge is making the non-covalent interactions occur in the ideal positions to generate strength comparable to that of covalent bonds. This work shows that small molecule YAWF can self-assemble into a liquid-crystal hydrogel (LCH), the mechanical properties of which could be controlled by water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!