Mixtures of glyme and aprotic-protic ionic liquids as electrolytes for energy storage devices.

J Chem Phys

Institute for Technical Chemistry and Environmental Chemistry, Friedrich-Schiller-University Jena, 07743 Jena, Germany.

Published: May 2018

Ionic liquids (ILs) have been proven to be promising electrolytes for electrochemical energy storage devices such as supercapacitors and lithium ion batteries. In the last years, due to deficiency in storage of lithium on earth, innovative systems, such as sodium-based devices, attracted considerable attention. IL-based electrolytes have been proposed also as electrolytes for these devices. Nevertheless, in the case of these systems, the advantages and limits of IL-based electrolytes need to be further investigated. In this work we report an investigation about the chemical-physical properties of mixtures containing bis(2-methoxyethyl)ether diglyme (2G), which is presently considered as one of the most interesting solvents for sodium-based devices, and the ionic liquids 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PyrTFSI) and 1-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PyrTFSI). The conductivities, viscosities, and densities of several mixtures of 2G and these ILs have been investigated. Furthermore, their impact on the electrochemical behaviour of activated carbon composite electrodes has been considered. The results of this investigation indicate that these mixtures are promising electrolytes for the realization of advanced sodium-based devices.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5013117DOI Listing

Publication Analysis

Top Keywords

ionic liquids
12
sodium-based devices
12
energy storage
8
storage devices
8
devices ionic
8
promising electrolytes
8
il-based electrolytes
8
bistrifluoromethanesulfonylimide pyrtfsi
8
electrolytes
6
devices
6

Similar Publications

The study reports solid-state ceramic supercapacitors (SSCs) assembled using a novel composite electrolyte based on Li ion conducting perovskite-type LLTO (LiLaTiO) and an ionic liquid (EMIM BF). Small amounts of various ionic liquids (ILs) were added to LLTO to enhance the ionic conductivity and improve electrode compatibility. The optimal composition with approximately ∼6 wt% EMIM BF in LLTO exhibited a high ionic conductivity of around ∼10 Ω cm at room temperature, nearly three orders of magnitude higher than that of the pristine LLTO.

View Article and Find Full Text PDF

Exploring Biophysical and Chemoinformatics Approaches for Interactions of Ionic Liquids with Hemoglobin, DNA, BSA, and HSA.

Chem Biodivers

January 2025

SRM Institute of Science and Technology - NCR Campus, chemistry, Department of Chemistry, SRM Institute of Science and Technology, Delhi NCR Camp, India, 241405, Modinagar, INDIA.

This review paper provides an inclusive overview of the intricate interactions amid ionic liquids (ILs) and essential biomacromolecules, mainly Hemoglobin (Hb), Bovine Serum Albumin (BSA), Human Serum Albumin (HSA), and Calf Thymus-DNA (CT-DNA). ILs have recently become a topic of great attention because of their inimitable physicochemical properties and potential uses in different fields. The review systematically explores the binding mechanisms, thermodynamics, and structural changes induced by ILs on Hb, BSA, HSA, and CT-DNA using spectroscopic, thermodynamic, and computational techniques.

View Article and Find Full Text PDF

A pair of axially chiral thermally activated delayed fluorescent (TADF) enantiomers, R-TCBN-ImEtPF6 and S-TCBN-ImEtPF6, with intrinsic ionic characteristics were efficiently synthesized by introducing imidazolium hexafluorophosphate to chiral TADF unit. The TADF imidazolium salts exhibited a high photoluminescence quantum yield (PLQY) of up to 92%, a small singlet-triplet energy gap (∆EST) of 0.04 eV, as well as reversible redox properties.

View Article and Find Full Text PDF

Thermodynamic regulation of carbon dioxide capture by functionalized ionic liquids.

Chem Soc Rev

January 2025

Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China.

Carbon dioxide capture has attracted worldwide attention because CO emissions cause global warming and exacerbate climate change. Ionic liquids (ILs) have good application prospects in carbon capture due to their excellent properties, which provide a new chance to develop efficient and reversible carbon capture systems. This paper reviews the recent progress in CO chemical absorption by ILs, such as N-site, O-site, C-site, and multi-site functionalized ILs.

View Article and Find Full Text PDF

ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!