The phytohormone abscisic acid (ABA)-induced leaf senescence facilitates nutrient reuse and potentially contributes to enhancing plant stress tolerance. However, excessive senescence causes serious reductions in crop yield, and the mechanism by which senescence is finely tuned at different levels is still insufficiently understood. Here, we found that the double mutant of core enzymes of the polycomb repressive complex 2 (PRC2) is hypersensitive to ABA in Arabidopsis thaliana. To elucidate the interplay between ABA and PRC2 at the genome level, we extensively profiled the transcriptomic and epigenomic changes triggered by ABA. We observed that H3K27me3 preferentially targets ABA-induced senescence-associated genes (SAGs). In the double, but not single, mutant of PRC2 enzymes, these SAGs were derepressed and could be more highly induced by ABA compared with the wild-type, suggesting a redundant role for the PRC2 enzymes in negatively regulating ABA-induced senescence. Contrary to the rapid transcriptomic changes triggered by ABA, the reduction of H3K27me3 at these SAGs falls far behind the induction of their expression, indicating that PRC2-mediated H3K27me3 contributed to long-term damping of ABA-induced senescence to prevent an oversensitive response. The findings of this study may serve as a paradigm for a global understanding of the interplay between the rapid effects of a phytohormone such as ABA and the long-term effects of the epigenetic machinery in regulating plant senescence processes and environmental responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.14125 | DOI Listing |
Plant J
June 2024
Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, 184-8588, Tokyo, Japan.
Abscisic acid (ABA) is a phytohormone that promotes leaf senescence in response to environmental stress. We previously identified methyl CpG-binding domain 10 (MBD10) as a phosphoprotein that becomes differentially phosphorylated after ABA treatment in Arabidopsis. ABA-induced leaf senescence was delayed in mbd10 knockout plants but accelerated in MBD10-overexpressing plants, suggesting that MBD10 positively regulates ABA-induced leaf senescence.
View Article and Find Full Text PDFRice (N Y)
December 2023
Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
Leaf senescence represents the final phase of leaf development and is characterized by a highly organized degenerative process involving the active translocation of nutrients from senescing leaves to growing tissues or storage organs. To date, a large number of senescence-associated transcription factors (sen-TFs) have been identified that regulate the initiation and progression of leaf senescence. Many of these TFs, including NAC (NAM/ATAF1/2/CUC2), WRKY, and MYB TFs, have been implicated in modulating the expression of downstream senescence-associated genes (SAGs) and chlorophyll degradation genes (CDGs) under the control of phytohormones.
View Article and Find Full Text PDFInt J Mol Sci
September 2023
Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
Leaf senescence is an important factor affecting the functional transition from nutrient assimilation to nutrient remobilization in crops. The senescence of wheat leaves is of great significance for its yield and quality. In the leaf senescence process, transcriptional regulation is a committed step in integrating various senescence-related signals.
View Article and Find Full Text PDFPlant Sci
December 2023
Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China.
Daylily (Hemerocallis fulva) is one of the most widely used perennial flowers, but its ornamental and economic value is greatly limited due to its ephemeral flowering period. In general, the flower senescence is regulated by the developmental signals and considered as an irreversible process of programmed cell death (PCD). However, the molecular mechanism of flower PCD in daylily still remains unclear.
View Article and Find Full Text PDFPlant J
May 2023
Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
Leaf senescence involves massive multidimensional alterations, such as nutrient redistribution, and is closely related to crop yield and quality. No apical meristem, Arabidopsis transcription activation factor, and Cup-shaped cotyledon (NAC)-type transcription factors integrate various signals and modulate an enormous number of target genes to ensure the appropriate progression of leaf senescence. However, few leaf senescence-related NACs have been functionally characterized in wheat.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!