In this work, excited state ab initio molecular dynamics together with a time resolved vibrational analysis is employed to shed light on the vibrational photoinduced dynamics of a well-known diarylethene molecule experiencing a ring opening reaction upon electronic excitation. The photoreactivity of diarylethenes is recognized to be controlled by a non-adiabatic intersection point between the ground and the first excited state surfaces. The computation of an energy scan, along a suitable reaction coordinate, allows us to identify the region of potential energy surfaces in which the ground (S0) and the first excited (S1) state are well separated. The adiabatic sampling of that region in S1 shows that in the first 3 picoseconds, the central CC bond, which is subject to break, oscillates in an antiphase with respect to the energy gap ΔE(S1 - S0). A multiresolution analysis based on the wavelet transform was then applied to the structural parameters extracted from the excited state dynamics. The wavelet maps show characteristic oscillations of the frequencies, mainly CC stretching and CCC bending localized on the central 4-ring moiety. Moreover, we have identified the main frequency (methyl wagging motion) involved in the modulation of these oscillations. The anharmonic coupling within a group of vibrational modes was therefore highlighted, in good agreement with experimental evidence. For the first time, a quantitative analysis of time resolved signals from a wavelet transform/ab initio molecular dynamics approach was performed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp04707c | DOI Listing |
J Phys Chem Lett
December 2024
Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
Light-harvesting complex II (LHCII), the most abundant membrane protein in photosystem II, plays dual roles, i.e., efficient light harvesting and energy transfer to the reaction center under low light conditions and dissipating excess energy as heat to prevent photodamage under high irradiation conditions.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Department of Chemistry, Lomonosov Moscow State University, Moscow 119991 Russia.
The recent detection of benzonitrile (CHCN) in the interstellar medium is one of the most fascinating discoveries in astrochemistry and molecular astrophysics. However, the mechanism of its formation in interstellar ices remains unclear. Here, we report the first evidence for the direct synthesis of benzonitrile through the radiation-induced transformations of an isolated CH···HCN complex in inert rigid media at cryogenic temperature (4.
View Article and Find Full Text PDFSmall
December 2024
School of Chemical Engineering, Sichuan University, No 24th, South Section 1, Yihuan Road, Chengdu, Sichuan, 610065, China.
The exogenous bacterial infection and formation of biofilm on the surface of titanium implants can affect the adhesion, proliferation, and differentiation of cells associated with osteogenesis, ultimately leading to surgical failure. This study focuses on two critical stages for biofilm formation: i) bacterial adhesion and aggregation, ii) growth and proliferation. The titanium with well-organized titania nanotube arrays is first modified by nitrogen dopants, then loaded with CuFeSe nanoparticles to form a p-n heterojunction.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Physics, Stockholm University, AlbaNova University Center, SE-10691 Stockholm, Sweden.
Vibrational polaritons are formed by strong coupling of molecular vibrations and photon modes in an optical cavity. Experiments have demonstrated that vibrational strong coupling can change molecular properties and even affect chemical reactivity. However, the interactions in a molecular ensemble are complex, and the exact mechanisms that lead to modifications are not fully understood yet.
View Article and Find Full Text PDFPhotochem Photobiol
December 2024
Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
Pyranoflavylium cations are synthetic analogues of pyranoanthocyanins, the much more color-stable compounds that are formed spontaneously from grape anthocyanins during the maturation of red wines. In the present work, our studies of the photophysical properties of pyranoanthocyanin analogues are extended to include nine pyranoflavylium cations substituted with one or two bromo and/or iodo heavy atoms. The room temperature fluorescence, 77 K fluorescence and phosphorescence, triplet formation in solution, and sensitized singlet oxygen formation, with excited state acidity suppressed by the addition of trifluoroacetic acid, are compared to those of similar pyranoflavylium cations that do not contain a heavy atom.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!