Cardiac arrhythmias remain a common challenge and are associated with significant morbidity and mortality. Effective and safe rhythm control strategies are a primary, yet unmet need in everyday clinical practice. Despite significant pharmacological and technological advances, including catheter ablation and device-based therapies, the development of more effective alternatives is of significant interest to increase quality of life and to reduce symptom burden, hospitalizations and mortality. The mechanistic understanding of pathophysiological pathways underlying cardiac arrhythmias has advanced profoundly, opening up novel avenues for mechanism-based therapeutic approaches. Current management of arrhythmias, however, is primarily guided by clinical and demographic characteristics of patient groups as opposed to individual, patient-specific mechanisms and pheno-/genotyping. With this state-of-the-art paper, the Working Group on Cellular Electrophysiology of the German Cardiac Society aims to close the gap between advanced molecular understanding and clinical decision-making in cardiac electrophysiology. The significance of cellular electrophysiological findings for clinical arrhythmia management constitutes the main focus of this document. Clinically relevant knowledge of pathophysiological pathways of arrhythmias and cellular mechanisms of antiarrhythmic interventions are summarized. Furthermore, the specific molecular background for the initiation and perpetuation of atrial and ventricular arrhythmias and mechanism-based strategies for therapeutic interventions are highlighted. Current "hot topics" in atrial fibrillation are critically appraised. Finally, the establishment and support of cellular and translational electrophysiology programs in clinical rhythmology departments is called for to improve basic-science-guided patient management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00392-018-1377-1 | DOI Listing |
Lancet Neurol
February 2025
Department of Cardiology, University Hospital Leipzig, Leipzig, Germany; Clinic for Cardiology and Pneumology, University Medicine Göttingen, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany.
Lancet Neurol
February 2025
Janssen Research & Development, a Johnson & Johnson Company, Titusville, NJ, USA.
Background: Given burdensome side-effects and long latency for efficacy with conventional agents, there is a continued need for generalised myasthenia gravis treatments that are safe and provide consistently sustained, long-term disease control. Nipocalimab, a neonatal Fc receptor blocker, was associated with dose-dependent reductions in total IgG and anti-acetylcholine receptor (AChR) antibodies and clinically meaningful improvements in the Myasthenia Gravis Activities of Daily Living (MG-ADL) scale in patients with generalised myasthenia gravis in a phase 2 study. We aimed to assess the safety and efficacy of nipocalimab in a phase 3 study.
View Article and Find Full Text PDFEBioMedicine
January 2025
Institute of Immunology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany; German Centre for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany. Electronic address:
Background: Aging increases disease susceptibility and reduces vaccine responsiveness, highlighting the need to better understand the aging immune system and its clinical associations. Studying the human immune system, however, remains challenging due to its complexity and significant inter-individual variability.
Methods: We conducted an immune profiling study of 550 elderly participants (≥60 years) and 100 young controls (20-40 years) from the RESIST Senior Individuals (SI) cohort.
J Clin Med
January 2025
Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, School of Medicine & Health, Technical University of Munich, Lazarettstrasse 36, 80636 Munich, Germany.
: In the presence of porcelain aorta (PA), transcatheter aortic valve replacement (TAVR) has become a class I therapeutic indication for the treatment of severe aortic valve stenosis. To date, few studies have analyzed the clinical outcomes of TAVR in PA patients. We aim to analyze the calcification patterns of the thoracic aorta in PA patients and to evaluate their clinical implications for TAVR procedures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!