AI Article Synopsis

  • Metarrestin is a new small molecule that targets the perinucleolar compartment, specifically designed for treating metastatic cancer cells, and this study assesses its pharmacokinetic properties and how it affects cancer-related biological markers.
  • The study involved administering different doses of metarrestin to mice with pancreatic tumors, revealing it has a good oral bioavailability and demonstrates significant tissue concentration in tumors, suggesting effective drug delivery.
  • Results indicated that metarrestin achieves high levels in tumor tissues, with a strong correlation between dosage and drug concentration, alongside a favorable influence on certain mRNA expressions related to tumor biology.

Article Abstract

Purpose: Metarrestin is a first-in-class small molecule clinical candidate capable of disrupting the perinucleolar compartment, a subnuclear structure unique to metastatic cancer cells. This study aims to define the pharmacokinetic (PK) profile of metarrestin and the pharmacokinetic/pharmacodynamic relationship of metarrestin-regulated markers.

Methods: PK studies included the administration of single or multiple dose of metarrestin at 3, 10, or 25 mg/kg via intravenous (IV) injection, gavage (PO) or with chow to wild-type C57BL/6 mice and KPC mice bearing autochthonous pancreatic tumors. Metarrestin concentrations were analyzed by UPLC-MS/MS. Pharmacodynamic assays included mRNA expression profiling by RNA-seq and qRT-PCR for KPC mice.

Results: Metarrestin had a moderate plasma clearance of 48 mL/min/kg and a large volume of distribution of 17 L/kg at 3 mg/kg IV in C57BL/6 mice. The oral bioavailability after single-dose (SD) treatment was > 80%. In KPC mice treated with SD 25 mg/kg PO, plasma AUC of 14400 ng h/mL, C of 810 ng/mL and half-life (t) of 8.5 h were observed. At 24 h after SD of 25 mg/kg PO, the intratumor concentration of metarrestin was high with a mean value of 6.2 µg/g tissue (or 13 µM), well above the cell-based IC of 0.4 µM. At multiple dose (MD) 25 mg/kg/day PO in KPC mice, mean tissue/plasma AUC ratio for tumor, spleen and liver was 37, 30 and 31, respectively. There was a good linear relationship of dosage to AUC and C. AUC MD to AUC SD ratios ranged from two for liver to five for tumor indicating additional accumulation in tumors. Dose-dependent normalization of FOXA1 and FOXO6 mRNA expression was observed in KPC tumors.

Conclusions: Metarrestin is an effective therapeutic candidate with a favorable PK profile achieving excellent intratumor tissue levels in a disease with known poor drug delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267684PMC
http://dx.doi.org/10.1007/s00280-018-3699-0DOI Listing

Publication Analysis

Top Keywords

kpc mice
16
metarrestin
8
multiple dose
8
c57bl/6 mice
8
mrna expression
8
auc auc
8
kpc
6
mice
6
auc
5
pharmacokinetic evaluation
4

Similar Publications

Pancreatic ductal adenocarcinoma (PDAC) is characterized by its poor prognosis. Traditional Japanese herbal medicine (Kampo), such as Juzentaihoto (a standardized combination of 10 herbal extracts), has shown immune modulatory effects, modulation of microcirculation, and amelioration of fatigue. It is administered to patients to prevent deterioration of cachexia and counteract side effects of chemotherapy.

View Article and Find Full Text PDF

Reprogramming tumor-associated macrophages with lipid nanosystems reduces PDAC tumor burden and liver metastasis.

J Nanobiotechnology

December 2024

Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain.

Background: Pancreatic ductal adenocarcinoma (PDAC) requires innovative therapeutic strategies to counteract its progression and metastatic potential. Since the majority of patients are diagnosed with advanced metastatic disease, treatment strategies targeting not only the primary tumor but also metastatic lesions are needed. Tumor-Associated Macrophages (TAMs) have emerged as central players, significantly influencing PDAC progression and metastasis.

View Article and Find Full Text PDF

Background: The typical pathological feature of pancreatic ductal adenocarcinoma (PDAC) is a significant increase in stromal reaction, leading to a hypoxic and poorly vascularized tumor microenvironment. Tumor cells undergo metabolic reprogramming, such as the Warburg effect, yet the underlying mechanisms are not fully understood.

Methods: Interference and overexpression experiments were conducted to analyze the in vivo and in vitro effects of USP7 on the growth and glycolysis of tumor cells.

View Article and Find Full Text PDF

Carbapenemase-producing (KPC) are globally emerging pathogens that cause life-threatening infections. Novel treatment alternatives are urgently needed. We therefore investigated the effectiveness of three novel bacteriophages (Spivey, Pharr, and Soft) in a neutropenic murine model of KPC gastrointestinal colonization, translocation, and disseminated infection.

View Article and Find Full Text PDF

Pancreatic Intraepithelial Neoplasia Revealed by Diffusion-Tensor MRI.

Invest Radiol

December 2024

From the Radiology Department, Champalimaud Foundation, Lisbon, Portugal (C.B., C.M.); Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal (C.B., F.F.F., R.H., C.C., A.I., M.C.-M., T.C., C.M., N.S.); Nova Medical School, Lisbon, Portugal (C.B.); i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal (R.V.S.); and Pathology Department, Champalimaud Foundation, Lisbon, Portugal (M.C.-M.).

Objectives: Detecting premalignant lesions for pancreatic ductal adenocarcinoma, mainly pancreatic intraepithelial neoplasia (PanIN), is critical for early diagnosis and for understanding PanIN biology. Based on PanIN's histology, we hypothesized that diffusion tensor imaging (DTI) and T2* could detect PanIN.

Materials And Methods: DTI was explored for the detection and characterization of PanIN in genetically engineered mice (KC, KPC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!