Purpose: This study aims at comparing the effects of symmetric and asymmetric designs for the polyethylene insert currently available and also for mobile bearing total knee arthroplasty (TKA). The investigation was performed both clinically and biomechanically through finite element analysis.
Methods: 303 patients, with a mobile bearing TKA, were analyzed retrospectively. All patients received the same femoral and tibial components; for the insert, 151 patients received a symmetric design (SD) and 152 an asymmetric design (AD). Additionally, a 3D finite element model of a lower leg was developed, resurfaced with the same TKAs and analysed during gait and squat activities. TKA kinematics, and bone-stresses were investigated for the two insert solutions.
Results: After surgery, patients' average flexion improved from 105°, with 5° of preoperative extension deficit, to 120° (AD-group) and 115° (SD-group) at the latest follow-up. There was no postoperative extension deficit. No pain affected the AD-group, while an antero-lateral pain was reported in some patients of the SD-group. Patients of the AD-group presented a better ability to perform certain physical routines. Biomechanically, the SD induced higher tibial-bone stresses than the AD. Both designs replicated similar kinematics, comparable to literature. However, SD rotates more on the tray, reducing the motion between femoral and polyethylene components, while AD permits greater insert rotation.
Conclusion: The biomechanical analysis justifies the clinical findings. TKA kinematics is similar for the two designs, although the asymmetric solution shows less bone stress, thus resulting as more suitable to be cemented, avoiding lift-off issues, inducing less pain. Clinically, and biomechanically, an asymmetric mobile bearing insert could be a valid alternative to symmetric mobile bearing insert.
Level Of Evidence: Case-control study retrospective comparative study, III.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00167-018-5207-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!