Echolocation allows toothed whales to adapt to underwater habitats where vision is ineffective. Because echolocation requires the ability to detect exceptional high-frequency sounds, fossils related to the auditory system can help to pinpoint the origin of echolocation in whales. However, because of conflicting interpretations of archaeocete fossils, when and how whales evolved the high-frequency hearing correlated with echolocation remain unclear. We address these questions at the molecular level by systematically investigating the convergent evolution of 7206 orthologs across 16 mammals and find that convergent genes between the last common ancestor of all whales (LCAW) and echolocating bats are not significantly enriched in functional categories related to hearing, and that convergence in hearing-related proteins between them is not stronger than that between nonecholocating mammalian lineages and echolocating bats. However, these results contrast with those of parallel analyses between the LCA of toothed whales (LCATW) and echolocating bats. Furthermore, we reconstruct the ancestral genes for the hearing protein for the LCAW and LCATW; we show that the LCAW exhibits the same function as that of nonecholocating mammals, but the LCATW shows functional convergence with that of extant echolocating mammals. Mutagenesis shows that functional convergence of prestin is driven by convergent changes in the prestins S392A and L497M in the LCATW and echolocating bats. Our results provide genomic and functional evidence supporting the origin of high-frequency hearing in the LCAW, not the LCATW, and reveal molecular insights into the origin and evolutionary trajectories of echolocation in whales.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170035 | PMC |
http://dx.doi.org/10.1126/sciadv.aat8821 | DOI Listing |
Biomimetics (Basel)
December 2024
Institute of Knowledge Technology, University Complutense of Madrid, 28040 Madrid, Spain.
The COVID-19 pandemic highlighted the urgent need for effective surface disinfection solutions, which has led to the use of mobile robots equipped with ultraviolet (UVC) lamps as a promising technology. This study aims to optimize the navigation of differential mobile robots equipped with UVC lamps to ensure maximum efficiency in disinfecting complex environments. Bio-inspired metaheuristic algorithms such as the gazelle optimization algorithm, whale optimization algorithm, bat optimization algorithm, and particle swarm optimization are applied.
View Article and Find Full Text PDFBiotechnol J
December 2024
Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Ultrasound (US) can easily penetrate media with excellent spatial precision corresponding to its wavelength. Naturally, US plays a pivotal role in the echolocation abilities of certain mammals such as bats and dolphins. In addition, medical US generated by transducers interact with tissues via delivering ultrasonic energy in the modes of heat generation, exertion of acoustic radiation force (ARF), and acoustic cavitation.
View Article and Find Full Text PDFCurr Biol
December 2024
Faculty of Life Sciences, School of Zoology, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. Electronic address:
A new method makes it possible to temporarily silence part of the bat midbrain while the animal is performing a sensorimotor task. Bats respond to this manipulation by increasing echolocation acquisition rate and adjusting their movement in a way that likely improves sensory acquisition.
View Article and Find Full Text PDFJ Anat
December 2024
Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan.
Orofacial morphology in mammals plays a critical role in essential life functions such as feeding and communication, which are influenced by the shapes of these anatomical structures. Bats are known to exhibit highly diversified orofacial morphotypes within their clade, reflecting their varied diets and echolocation behaviors. The presence of bony discontinuities between the premaxilla and maxilla or among the premaxillae is a notable feature of bat orofacial morphology, observed in certain lineages.
View Article and Find Full Text PDFJ Neurophysiol
December 2024
Department of Neuroscience, Brown University, Providence, Rhode Island, United States.
Echolocating big brown bats () detect changes in ultrasonic echo delay with an acuity as sharp as 1 µs or less. How this perceptual feat is accomplished in the nervous system remains unresolved. Here, we examined the precision of latency registration (latency jitter) in neural population responses as a possible mechanism underlying the bat's hyperacuity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!