AI Article Synopsis

Article Abstract

Aberrant activation of Wnt/β-catenin signaling pathway is essential for the development of AML; however, the mechanistic basis for this dysregulation is unclear. PRL-3 is an oncogenic phosphatase implicated in the development of LSCs. Here, we identified Leo1 as a direct and specific substrate of PRL-3. Serine-dephosphorylated form of Leo1 binds directly to β-catenin, promoting the nuclear accumulation of β-catenin and transactivation of TCF/LEF downstream target genes such as cyclin D1 and c-myc. Importantly, overexpression of PRL-3 in AML cells displayed enhanced sensitivity towards β-catenin inhibition in vitro and in vivo, suggesting that these cells are addicted to β-catenin signaling. Altogether, our study revealed a novel regulatory role of PRL-3 in the sustenance of aberrant β-catenin signaling in AML. PRL-3 may serve as a biomarker to select for the subset of AML patients who are likely to benefit from treatment with β-catenin inhibitors. Our study presents a new avenue of cancer inhibition driven by PRL-3 overexpression or β-catenin hyperactivation.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41388-018-0526-3DOI Listing

Publication Analysis

Top Keywords

β-catenin
8
β-catenin signaling
8
prl-3
7
non-canonical activation
4
activation β-catenin
4
β-catenin prl-3
4
prl-3 phosphatase
4
phosphatase acute
4
acute myeloid
4
myeloid leukemia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!