Quantum physics is undoubtedly the most successful theory of the microscopic world, yet the complexities which arise in applying it even to simple atomic and molecular systems render the description of basic collision probabilities a formidable task. For this reason, approximations are often employed, the validity of which may be restricted to given energy regimes and/or targets and/or projectiles. Now we have found that the lognormal function, widely used for the probability distribution of macroscopic stochastic events (as diverse as periods of incubation of and recovery from diseases, size of grains, abundance of species, fluctuations in economic quantities, etc.) may also be employed to describe the energy dependence of inelastic collisions at the quantum level (including ionization, electron capture and excitation by electrons, positrons, protons, antiprotons, etc.), by allowing for the relevant threshold energy. A physical interpretation is discussed in this article by analogy with the heat capacity of few-level systems in solid state physics. We find the generality of the analysis to extend also to nuclear reactions. As well as aiding the description of collision probabilities for quantum systems, this finding is expected to impact also on the fundamental understanding of the interface between the classical and quantum domains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180078 | PMC |
http://dx.doi.org/10.1038/s41598-018-33425-8 | DOI Listing |
J Am Chem Soc
January 2025
State Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
Recent progress in superconductor-insulator transition has shed light on the intermediate metallic state with unique electronic inhomogeneity. The microscopic model, suggesting that carrier spatial distribution plays a decisive role in the intermediate state, has been instrumental in understanding the quantum transition. However, the narrow carrier density window in which the intermediate state exists necessitates precise control of the gate dielectric layer, presenting a challenge to in situ map the carrier spatial distribution.
View Article and Find Full Text PDFJ Plant Res
January 2025
Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan.
Since photosynthesis is highly sensitive to salinity stress, remote sensing of photosynthetic status is useful for detecting salinity stress during the selection and breeding of salinity-tolerant plants. To do so, photochemical reflectance index (PRI) is a potential measure to detect conversion of the xanthophyll cycle in photosystem II. Raphanus sativus var.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Faculty of Applied Chemistry and Materials Science, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, Sector 6, 060042 Bucharest, Romania.
A novel electrochemical detection method utilizing a cost-effective hybrid-modified electrode has been established. A glassy carbon (GC) modified electrode was tested for its ability to measure electrochemical tTG antibody levels, which are essential for diagnosing and monitoring Celiac disease (CD). Tissue transglutaminase protein biomolecules are immobilized on a quantum dots-polypyrrole nanocomposite in the improved electrode.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
A notable feature of systems with non-Hermitian skin effects is the sensitivity to boundary conditions. In this work, we introduce one type of boundary condition provided by a coupling impurity. We consider a system where a two-level system as an impurity couples to a nonreciprocal Su-Schrieffer-Heeger chain under periodic boundary conditions at two points with asymmetric couplings.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
Center for Nonlinear Sciences and Department of Physics, University of North Texas, Denton, TX 76203, USA.
Classically, the refractive index of a medium is due to a response on said medium from an electromagnetic field. It has been shown that a single two-level atom interacting with a single photon undergoes dispersion. The following extends that analyses to a three-level system interacting with two photons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!