Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A water droplet behavior on the liquid n-octadecane film is investigated. The coating of hydrophobic surface by N-octadecane film provides exchange of wetting state on the surface. The polycarbonate surface is crystallized and the functionalized silica particles are placed on the resulting surface prior to thin film coating of n-octadecane. A high-speed camera is used to monitor dynamic characteristics of the droplet on the inclined film. The findings reveal that deposition of thin n-octadecane film on hydrophobic surface results in reversibly exchange of the wetting state at the surface, which remains hydrophobic when n-octadecane film is in solid phase while it becomes hydrophilic when n-octadecane film liquefies. Droplet transition velocity predicted agrees well with the experimental data. Sliding mode of the water droplet governs droplet transition on the liquid surface. Droplet pinning force, due to interfacial tension, dominates over the other retention forces including drag and shear.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180037 | PMC |
http://dx.doi.org/10.1038/s41598-018-33384-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!