The relationship between biodiversity and functional redundancy has remained ambiguous for over a half-century, likely due to an inability to distinguish between positivist and apophatic (that which is missing) properties of ecosystems. Apophases are best addressed by mathematics that is predicated upon absence, such as information theory. More than 40 years ago, the conditional entropy of a flow network was proposed as a formulaic way to quantify trophic functional redundancy, an advance that has remained relatively unappreciated. When applied to a collection of 25 fully quantified trophic networks, this authoritative index correlates only poorly and transitively with conventional Hill numbers used to represent biodiversity. Despite such a weak connection, the underlying biomass distribution remains useful in conjunction with the qualitative diets of system components for providing a quick and satisfactory emulation of a system's functional redundancy. Furthermore, an information-theoretic cognate of the Wigner Semicircle Rule can be formulated using network conditional entropy to provide clues to the relative stability of any ecosystem under study. The necessity for a balance between positivist and apophatic attributes pertains to the functioning of a host of other living ensemble systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6228498 | PMC |
http://dx.doi.org/10.1098/rsif.2018.0367 | DOI Listing |
Front Robot AI
January 2025
Neuro-robotics Laboratory, Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan.
Reliable proprioception and feedback from soft sensors are crucial for enabling soft robots to function intelligently in real-world environments. Nevertheless, soft sensors are fragile and are susceptible to various damage sources in such environments. Some researchers have utilized redundant configuration, where healthy sensors compensate instantaneously for lost ones to maintain proprioception accuracy.
View Article and Find Full Text PDFHeliyon
January 2025
Beijing SinoHytec Co., Ltd., Zhongguancun, Dongsheng S & T Park, 66 Xixiaokou Road, Beijing 100192, China.
Functional safety is an emerging trend for safety design in the automobile industry. This study is an innovative exploration of a hazard analysis and quantitative risk assessment (QRA) methodology based on the functional safety of vehicular fuel cell systems. In this study, the potential hazards that fuel cell vehicles may encounter during operation were identified using the automobile generic hazard list.
View Article and Find Full Text PDFFront Microbiol
January 2025
Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China.
Introduction: Soil acidification imperils soil health and hinders the agricultural sustainability. As being more tolerant than bacteria to soil acidification, so it would be more meaningful for agricultural management and crop yield to characterize fungal community in acidic soils and manifest its key drivers.
Method: This study investigated the composition and diversity of fungal communities and its key driving factors by collecting 90 soil samples from the acidic region of Jiaodong Peninsula China, spanning 3 × 10 km.
Environ Microbiome
January 2025
Luzhou Laojiao Co., Ltd., Luzhou, 646000, China.
Background: Pit mud (PM) hosts diverse microbial communities, which serve as a medium to impart flavor and quality to Baijiu and exhibit long-term tolerance to ethanol and acids, resulting in a unique ecosystem. However, the ecology and metabolic functions of PM remain poorly understood, as many taxa in PM represent largely novel lineages. In this study, we used a combination of metagenomic analysis and chemical derivatization LC-MS analysis to provide a comprehensive overview of microbial community structure, metabolic function, phylogeny, horizontal gene transfer, and the relationship with carboxyl compounds in spatiotemporal PM samples.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
University of Münster, Department of Biology, Institute of Plant Biology and Biotechnology, Molecular Physiology of Plants, Schlossplatz 7, 48149 Münster, Germany.
The oxidative pentose phosphate pathway (OPPP) plays an important role for the generation of reducing power in all eukaryotes. In plant cells the OPPP operates in several cellular compartments, but as full cycle only in the plastid stroma where it is essential. As suggested by our recent results, OPPP reactions are also mandatory inside peroxisomes, at least during fertilisation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!