Progression to clinical type 1 diabetes varies among children who develop β-cell autoantibodies. Differences in autoantibody patterns could relate to disease progression and etiology. Here we modeled complex longitudinal autoantibody profiles by using a novel wavelet-based algorithm. We identified clusters of similar profiles associated with various types of progression among 600 children from The Environmental Determinants of Diabetes in the Young (TEDDY) birth cohort study; these children developed persistent insulin autoantibodies (IAA), GAD autoantibodies (GADA), insulinoma-associated antigen 2 autoantibodies (IA-2A), or a combination of these, and they were followed up prospectively at 3- to 6-month intervals (median follow-up 6.5 years). Children who developed multiple autoantibody types ( = 370) were clustered, and progression from seroconversion to clinical diabetes within 5 years ranged between clusters from 6% (95% CI 0, 17.4) to 84% (59.2, 93.6). Children who seroconverted early in life (median age <2 years) and developed IAA and IA-2A that were stable-positive on follow-up had the highest risk of diabetes, and this risk was unaffected by GADA status. Clusters of children who lacked stable-positive GADA responses contained more boys and lower frequencies of the HLA-DR3 allele. Our novel algorithm allows refined grouping of β-cell autoantibody-positive children who distinctly progressed to clinical type 1 diabetes, and it provides new opportunities in searching for etiological factors and elucidating complex disease mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302536PMC
http://dx.doi.org/10.2337/db18-0594DOI Listing

Publication Analysis

Top Keywords

type diabetes
8
children developed
8
children
6
time-resolved autoantibody
4
autoantibody profiling
4
profiling facilitates
4
facilitates stratification
4
stratification preclinical
4
preclinical type
4
diabetes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!