A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Preparation of Graphene Oxide-Based Supramolecular Hybrid Nanohydrogel Through Host-Guest Interaction and Its Application in Drug Delivery. | LitMetric

Graphene oxide (GO) has attracted a wide attention for its excellent mechanical, thermal properties and unique two-dimensional structure. In this work, A new GO-based supramolecular hybrid nanohydrogel was prepared, in which GO as the cross-links was incorporated into the above hydrogel through non-covalent functionalization to enhance the mechanical properties and control morphology. A 1-pyrenebutyric acid (Py) modified low-molecular weight (MW) mPEG was firstly synthesized via a simple esterification reaction. Then, low-MW mPEG functionalized GO (GO-Py-PEG) was obtained due to the strong - stacking interaction between Py and GO. The combination of the host-guest interaction between mPEG and -CD and addition of GO lastly leaded to the formation of supramolecular hybrid nanohydrogel. Various techniques including UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM) were used to thoroughly characterize the hybrid hydrogel. More interestingly, the results of rheology studies and scanning electron microscopy (SEM) revealed that the mechanical strength and morphology of hybrid hydrogel was improved by the incorporation of GO. Meanwhile, doxorubicin hydrochloride (DOX) as a model drug was loaded into hybrid hydrogel, and the released behavior was studied under different pH values. The results showed that the formed hybrid hydrogel could release DOX over 50 h in a sustained manner. In addition, and experiments, GO-Py-PEG--CD@DOX hydrogel (hydrogel@DOX) dramatically shows the inhibition of tumor cell proliferation and tumor growth. At the same time, HE staining results show hydrogel@DOX can significantly reduce the side effects of DOX. We believe that the development of such hybrid hydrogels will provide important potential for medical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2018.2648DOI Listing

Publication Analysis

Top Keywords

hybrid hydrogel
16
supramolecular hybrid
12
hybrid nanohydrogel
12
hybrid
8
host-guest interaction
8
electron microscopy
8
hydrogel
6
preparation graphene
4
graphene oxide-based
4
oxide-based supramolecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!