Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Anatomically preserved fossils allow estimation of hydraulic parameters, potentially providing constraints on interpreting whole-plant physiology. However, different organ systems have typically been considered in isolation - a problem given common mismatches of high and low conductance components coupled in the hydraulic path of the same plant. A recent paper addressed the issue of how to handle resistance mismatches in fossil plant hydraulics, focusing on Carboniferous medullosan seed plants and arborescent lycopsids. Among other problems, however, a fundamental error was made: the transpiration stream consists of resistances in series (where resistances are additive and the component with the largest resistance can dominate the behavior of the system), but emphasis was instead placed on the lowest resistance, effectively treating the system as resistances in parallel (where the component with the smallest resistance will dominate the behavior). Instead of possessing high assimilation capacities to match high specific stem conductances, it is argued here that individual high conductance components in these Paleozoic plants are nonetheless associated with low whole-plant productivity, just as can be commonly seen in living plants. Resolution of how to handle these issues may have broad implications for the Earth system including geobiological feedbacks to rock weathering, atmospheric composition, and climate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.15446 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!