Cell extracts from human leukemic T lymphoblasts and myeloblasts were chromatographed on DEAE-cellulose columns to separate purine deoxyribonucleoside, deoxyadenosine (dAdo) and deoxyguanosine (dGuo), phosphorylating activities. Three distinct purine deoxyribonucleoside kinases, a deoxycytidine (dCyd) kinase, an adenosine (Ado) kinase, and a deoxyguanosine (dGuo) kinase (the latter appears to be localized in mitochondria), were resolved. dCyd kinase contained the major phosphorylating activity for dAdo, dGuo, and 9-beta-D-arabinofuranosyladenine (ara-A). Ado kinase represented a second kinase for dAdo and ara-A while a third kinase for dAdo was found in mitochondria. dCyd kinase was purified about 2000-fold with ion-exchange, affinity, and hydrophobic chromatographies. On gel electrophoresis, both dCyd and dAdo phosphorylating activities comigrated, indicating that the activities are associated with the same protein. The enzyme showed a broad pH optimum ranging from pH 6.5 to pH 9.5. Divalent cations Mg2+, Mn2+, and Ca2+ stimulated dCyd kinase activity; Mg2+ produced the maximal activity. dCyd kinase from either lymphoid or myeloid cells showed broad substrate specificity. The enzyme used several nucleoside triphosphates, but ATP, GTP, and dTTP were the best phosphate donors. dCyd was the best nucleoside substrate, since dCyd kinase had an apparent Km of 0.3, 85, 90, and 1400 microM for dCyd, dAdo, dGuo, and ara-A, respectively. The enzyme exhibited substrate activation with both pyrimidine and purine deoxyribonucleosides, suggesting that there is more than one substrate binding site on the kinase. These studies show that, in lymphoblasts and myeloblasts, purine deoxyribonucleosides and their analogues are phosphorylated by dCyd kinase, Ado kinase, and dGuo kinase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00376a034 | DOI Listing |
Hum Cell
January 2025
Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan.
We previously examined the antitumor effects of short interfering RNA nanoparticles targeting mammalian target of rapamycin (mTOR) in an orthotopic pancreatic cancer mouse model. We herein report the inhibitory effects of the mTOR inhibitor rapamycin on tumor growth in a novel established mouse model of pancreatic cancer using human pancreatic cancer cell line-derived organoids. Gemcitabine, 5-fluorouracil, and gemcitabine plus nab-paclitaxel are clinically used to treat advanced pancreatic cancer.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Department of Medical Oncology, Kartal Dr. Lütfi Kırdar City Hospital, Istanbul 34865, Türkiye.
: Metastatic breast cancer (MBC), particularly the HER2-positive subtype, represents a significant clinical challenge, with approximately 20-25% of breast cancer cases demonstrating HER2 overexpression. Trastuzumab, a monoclonal antibody targeting HER2, has significantly improved outcomes in these patients. However, progression after second-line treatments such as trastuzumab emtansine (T-DM1) necessitates exploring subsequent therapeutic options.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 PanjiayuanNanli, Chaoyang District, Beijing, 100021, China.
Anti-angiogenesis offers an important treatment strategy for metastatic breast cancer (MBC). Metronomic chemotherapy (MCT) provides antiangiogenic effects without increased toxicities, making it good partner for antiangiogenic therapy. We conducted the present retrospective study to evaluate the efficacy and safety of anlotinib plus MCT for HER2 negative MBC.
View Article and Find Full Text PDFOncol Rep
February 2025
Department of Otolaryngology Head & Neck Surgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China.
Laryngeal squamous cell carcinoma (LSCC), which represents a significant proportion of head and neck squamous cell carcinoma cases, is often diagnosed at advanced stages, underscoring the urgent need for effective biomarkers and therapeutic targets. Junctional adhesion molecule 3 () is implicated in various types of cancer; however, its role in LSCC remains unclear. Therefore, the present study aimed to investigate the epigenetic regulation and tumor‑suppressive functions and mechanisms of in LSCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!