The design, construction, and characterization of a site-directed CC-1065-N3-adenine adduct in a 117 base pair segment of M13mpI DNA are described. CC-1065 is an extremely potent antitumor antibiotic produced by Streptomyces zelensis. Previous studies have demonstrated that the cyclopropyl ring of CC-1065 reacts quite specifically with N3 of adenine in double-stranded DNA to form a CC-1065-DNA adduct. Following alkylation, the drug molecule lies snugly within the minor groove of DNA, overlapping with five base pairs for which a marked sequence preference exists [Hurley, L. H., Reynolds, V. R., Swenson, D. H., Petzold, G. L., & Scahill, T. A. (1984) Science (Washington, D.C.) 226, 843-844]. On the basis of the unique characteristics of the reaction of CC-1065 with DNA and the structure of the resulting DNA adduct, we have designed a general strategy to construct a site-directed CC-1065-DNA adduct in a restriction fragment. The presence of unique AluI and HaeIII restriction enzymes sites on each side of a high-affinity CC-1065 binding sequence (5'-GATTA) permitted the preparation of a partial duplex DNA molecule containing the CC-1065 binding sequence in the duplex DNA region. Since CC-1065 only binds to duplex DNA, potential CC-1065 binding sequences in the long single-stranded regions were protected from drug binding during the construction process.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00374a016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!