Parvalbumin-expressing (PV) GABAergic interneurons regulate local circuit dynamics. In terms of the excitation driving PV interneuron activity, the N-methyl-d-aspartate receptor (NMDAR)-mediated component onto PV interneurons tends to be smaller than that onto pyramidal neurons but makes a significant contribution to their physiology and development. In the visual cortex, PV interneurons mature during the critical period. We hypothesize that during the critical period, the NMDAR-mediated signaling and functional properties of glutamatergic synapses onto PV interneurons are developmentally regulated. We therefore compared the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)- and NMDAR-mediated synaptic responses before (postnatal days 15-20, P15-P20), during (P25-P40), and after (P50-P60) the visual critical period. AMPAR miniature excitatory postsynaptic currents (mEPSCs) showed a developmental decrease in frequency, whereas NMDAR mEPSCs were absent or showed extremely low frequencies throughout development. For evoked responses, we consistently saw a NMDAR-mediated component, suggesting pre- or postsynaptic differences between evoked and spontaneous neurotransmission. Evoked responses showed input-specific developmental changes. For intralaminar inputs, the NMDAR-mediated component significantly decreased with development. This resulted in adult intralaminar inputs almost exclusively mediated by AMPARs, suited for the computation of synaptic inputs with precise timing, and likely having NMDAR-independent forms of plasticity. In contrast, interlaminar inputs maintained a stable NMDAR-mediated component throughout development but had a shift in the AMPAR paired-pulse ratio from depression to facilitation. Adult interlaminar inputs with facilitating AMPAR responses and a substantial NMDAR component would favor temporal integration of synaptic responses and could be modulated by NMDAR-dependent forms of plasticity. NEW & NOTEWORTHY We show for the first time input-specific developmental changes in the N-methyl-d-aspartate receptor component and short-term plasticity of the excitatory drive onto layers 2/3 parvalbumin-expressing (PV) interneurons in the visual cortex during the critical period. These developmental changes would lead to functionally distinct adult intralaminar and interlaminar glutamatergic inputs that would engage PV interneuron-mediated inhibition differently.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337035PMC
http://dx.doi.org/10.1152/jn.00495.2018DOI Listing

Publication Analysis

Top Keywords

nmdar-mediated component
16
critical period
16
visual cortex
12
developmental changes
12
parvalbumin-expressing interneurons
8
layers 2/3
8
n-methyl-d-aspartate receptor
8
synaptic responses
8
evoked responses
8
input-specific developmental
8

Similar Publications

Unlabelled: N-methyl-D-aspartate receptors (NMDARs) comprise a family of ligand-gated ionotropic glutamate receptors that mediate a slow, calcium-permeable component to excitatory neurotransmission. The GluN2D subunit is enriched in GABAergic inhibitory interneurons in cortical tissue. Diminished levels of GABAergic inhibition contribute to multiple neuropsychiatric conditions, suggesting that enhancing inhibition may have therapeutic utility, thus making GluN2D modulation an attractive drug target.

View Article and Find Full Text PDF

NMDA-type glutamate receptors (NMDARs) play a crucial role in synaptogenesis, circuit development, and synaptic plasticity, serving as fundamental components in cellular models of learning and memory. Their dysregulation has been implicated in several neurological disorders and synaptopathies. NMDARs are heterotetrameric complexes composed of two GluN1 and two GluN2 subunits.

View Article and Find Full Text PDF

The discovery of subunit-selective GluN1/GluN2B NMDAR antagonist via pharmacophere-based virtual screening.

Exp Biol Med (Maywood)

December 2023

Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China.

The incidence and mortality rates of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, are gradually increasing worldwide. Numerous studies have demonstrated that N-methyl-D-aspartic acid receptor (NMDAR)-mediated excitotoxicity contributes to neurodegenerative diseases. Ifenprodil, a subtype-selective NMDAR antagonist, showed strong therapeutic potential.

View Article and Find Full Text PDF

We recently reported that the competitive NMDAR antagonist (R,S)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) does not suppress NMDAR-mediated field EPSPs (fEPSP) or long-term potentiation (LTP) in vitro at concentrations that block contextual conditioning in vivo. Here we tested one possible explanation for the mismatch - that the hippocampus is relatively resistant to CPP compared to other brain structures engaged in contextual fear conditioning. Using the context pre-exposure facilitation effect (CPFE) paradigm to separate the hippocampal and extra-hippocampal components of contextual learning, we found that the active enantiomer (R)-CPP suppressed the hippocampal component with an IC50 of 3.

View Article and Find Full Text PDF

Uncovering the Underlying Mechanisms of Ketamine as a Novel Antidepressant.

Front Pharmacol

July 2022

Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China.

Major depressive disorder (MDD) is a devastating psychiatric disorder which exacts enormous personal and social-economic burdens. Ketamine, an -methyl-D-aspartate receptor (NMDAR) antagonist, has been discovered to exert rapid and sustained antidepressant-like actions on MDD patients and animal models. However, the dissociation and psychotomimetic propensities of ketamine have limited its use for psychiatric indications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!