By combining rotational spectroscopy in supersonic expansion with the capability of state-of-the-art quantum-chemical computations in accurately determining structural and energetic properties, the genuine nature of a sulfur-sulfur chalcogen bond between dimethyl sulfide and sulfur dioxide has been unveiled in a gas-jet environment free from collision, solvent and matrix perturbations. A SAPT analysis pointed out that electrostatic S⋅⋅⋅S interactions play the dominant role in determining the stability of the complex, largely overcoming dispersion and C-H⋅⋅⋅O hydrogen-bond contributions. Indeed, in agreement with the analysis of the quadrupole-coupling constants and of the methyl internal rotation barrier, the NBO and NOCV/CD approaches show a marked charge transfer between the sulfur atoms. Based on the assignment of the rotational spectra for 7 isotopologues, an accurate semi-experimental equilibrium structure for the heavy-atom backbone of the molecular complex has been determined, which is characterized by a S⋅⋅⋅S distance (2.947(3) Å) well below the sum of van der Waals radii.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201810637DOI Listing

Publication Analysis

Top Keywords

structural energetic
8
unveiling sulfur-sulfur
4
sulfur-sulfur bridge
4
bridge accurate
4
accurate structural
4
energetic characterization
4
characterization homochalcogen
4
homochalcogen intermolecular
4
intermolecular bond
4
bond combining
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!