The development of hydrogen fuel cells is greatly hindered by the unwanted generation of H O at the cathode. A non-Pt cathode catalyst is now shown to be capable of simultaneously reducing both O and H O , thus rendering H O a useful part of the feed stream. The applicability of this unique catalyst is demonstrated by employing it in a fuel cell running on H /CO and O /H O .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201810270 | DOI Listing |
Sci Total Environ
January 2025
School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
Ammonia (NH) holds promise as a carbon-free fuel. Blending it with highly reactive fuels could efficiently alleviate issues such as slow burning rates and narrow flammability ranges. Ethanol (CHOH) offers the advantage of carbon neutrality and has a high-octane rating.
View Article and Find Full Text PDFMolecules
January 2025
Orlen Unicre a.s., Revolucňí 1521/84, 400 01 Ústí nad Labem, Czech Republic.
The increasing global population and urbanization have led to significant challenges in waste management, particularly concerning vacuum blackwater (VBW), which is the wastewater generated from vacuum toilets. Traditional treatment methods, such as landfilling and composting, often fall short in terms of efficiency and sustainability. Anaerobic digestion (AD) has emerged as a promising alternative, offering benefits such as biogas production and digestate generation.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
School of Engineering, Deakin University, 75 Pigdons Rd., Waurn Ponds, Geelong, VIC 3216, Australia.
The metal bipolar plate is a critical component of the hydrogen fuel cell stack used in proton exchange membrane fuel cells. Bipolar plates must have high accuracy micro-channels with a high aspect ratio () between the channel depth and the half periodic width to achieve optimal cell performance. Conventional forming methods, such as micro-stamping, hydroforming, and rubber pad forming, cannot achieve these high ARs given that in these processes, material deformation is dominated by stretch deformation.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Light-driven bioethanol dehydration offers attractive outlooks for the sustainable production of ethylene. Herein, a surface-hydrogenated CrMnO is coupled with GaN nanowires (GaN@CMO-H) for light-driven ethanol dehydration to ethylene. Through combined experimental and computational investigations, a surface hydrogen-replenishment mechanism is proposed to disclose the ethanol dehydration pathway over GaN@CMO-H.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
Ethylene glycol, a widely used chemical, has a large global capacity exceeding 40 million tons per year. Nevertheless, its production is heavily reliant on fossil fuels, resulting in substantial CO emissions. Herein, we report an approach for electrochemically producing ethylene glycol from biomass glycerol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!