Multifunctional Catalysts for H O -Resistant Hydrogen Fuel Cells.

Angew Chem Int Ed Engl

Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Small Molecule Energy, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.

Published: November 2018

The development of hydrogen fuel cells is greatly hindered by the unwanted generation of H O at the cathode. A non-Pt cathode catalyst is now shown to be capable of simultaneously reducing both O and H O , thus rendering H O a useful part of the feed stream. The applicability of this unique catalyst is demonstrated by employing it in a fuel cell running on H /CO and O /H O .

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201810270DOI Listing

Publication Analysis

Top Keywords

hydrogen fuel
8
fuel cells
8
multifunctional catalysts
4
catalysts -resistant
4
-resistant hydrogen
4
cells development
4
development hydrogen
4
cells greatly
4
greatly hindered
4
hindered unwanted
4

Similar Publications

Ammonia (NH) holds promise as a carbon-free fuel. Blending it with highly reactive fuels could efficiently alleviate issues such as slow burning rates and narrow flammability ranges. Ethanol (CHOH) offers the advantage of carbon neutrality and has a high-octane rating.

View Article and Find Full Text PDF

The increasing global population and urbanization have led to significant challenges in waste management, particularly concerning vacuum blackwater (VBW), which is the wastewater generated from vacuum toilets. Traditional treatment methods, such as landfilling and composting, often fall short in terms of efficiency and sustainability. Anaerobic digestion (AD) has emerged as a promising alternative, offering benefits such as biogas production and digestate generation.

View Article and Find Full Text PDF

A High-Precision Micro-Roll Forming Facility for Fuel Cell Metal Bipolar Plate Production.

Micromachines (Basel)

January 2025

School of Engineering, Deakin University, 75 Pigdons Rd., Waurn Ponds, Geelong, VIC 3216, Australia.

The metal bipolar plate is a critical component of the hydrogen fuel cell stack used in proton exchange membrane fuel cells. Bipolar plates must have high accuracy micro-channels with a high aspect ratio () between the channel depth and the half periodic width to achieve optimal cell performance. Conventional forming methods, such as micro-stamping, hydroforming, and rubber pad forming, cannot achieve these high ARs given that in these processes, material deformation is dominated by stretch deformation.

View Article and Find Full Text PDF

Surface-hydrogenated CrMnO coupled with GaN nanowires for light-driven bioethanol dehydration to ethylene.

Nat Commun

January 2025

Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

Light-driven bioethanol dehydration offers attractive outlooks for the sustainable production of ethylene. Herein, a surface-hydrogenated CrMnO is coupled with GaN nanowires (GaN@CMO-H) for light-driven ethanol dehydration to ethylene. Through combined experimental and computational investigations, a surface hydrogen-replenishment mechanism is proposed to disclose the ethanol dehydration pathway over GaN@CMO-H.

View Article and Find Full Text PDF

Electrosynthesis of ethylene glycol from biomass glycerol.

Nat Commun

January 2025

Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.

Ethylene glycol, a widely used chemical, has a large global capacity exceeding 40 million tons per year. Nevertheless, its production is heavily reliant on fossil fuels, resulting in substantial CO emissions. Herein, we report an approach for electrochemically producing ethylene glycol from biomass glycerol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!