Due to their flexibility and solution applicability, organic field-effect transistors (OFETs) are considered prominent candidates for application in flexible and low-cost devices. A soluble phthalocyaninato cobalt(ii) complex was designed and synthesized based on a hexadeca-substitution pattern by introducing peripheral phenylethynyl groups and non-peripheral n-butoxy groups. The cobalt phthalocyanine derivative was characterized using a wide range of spectroscopic and electrochemical methods, as well as single-crystal X-ray diffraction analysis. An OFET device was fabricated using a spin-coated film of soluble 1,4,8,11,15,18,22,25-octakisbutoxy-2,3,9,10,16,17,23,24-octakis-ethynyl phenyl phthalocyaninato cobalt(ii) with a bottom-gate top-contact device configuration. The transfer and output characteristics were investigated to evaluate the charge carrier mobility. The mechanisms of the leakage current through the gate dielectric were also investigated, which revealed that the dominant leakage current mechanism is Fowler-Nordheim tunneling.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8dt02948bDOI Listing

Publication Analysis

Top Keywords

cobalt phthalocyanine
8
organic field-effect
8
field-effect transistors
8
phthalocyaninato cobaltii
8
leakage current
8
π-extended hexadeca-substituted
4
hexadeca-substituted cobalt
4
phthalocyanine active
4
active layer
4
layer organic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!