We report the synthesis and solution based photophysical properties of a new Pt(ii)-terpyridine complex coupled to a perylene monoimide (PMI) chromophoric unit through an acetylene linkage. This structural arrangement resulted in quantitative quenching of the highly fluorescent PMI chromophore by introducing metal character into the lowest energy singlet state, thereby leading to the formation of a long-lived PMI-ligand localized triplet excited state (τ = 8.4 μs). Even though the phosphorescence from this triplet state was not observed, highly efficient quenching of this excited state by dissolved oxygen and the observation of singlet oxygen photoluminescence in the near-IR at 1270 nm initially pointed towards triplet excited state character. Additionally, the coincidence of the excited state absorbance difference spectra from the sensitized PMI ligand using a triplet donor and the Pt-PMI complex provided strong evidence for this triplet state assignment, which was further supported by TD-DFT calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8dt02496kDOI Listing

Publication Analysis

Top Keywords

excited state
20
triplet excited
12
state
8
perylene monoimide
8
triplet state
8
excited
5
triplet
5
long-lived triplet
4
state platinumii
4
platinumii perylene
4

Similar Publications

Torsion-Vibration Interactions in S and S Phenylsilane.

J Phys Chem A

January 2025

College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.

We report the results of a study of the interaction between torsion and the low frequency out-of-plane silyl wag vibration in the ground, S, and excited, S, electronic states of phenylsilane. These studies follow the observation of interactions between methyl torsion and the out-of-plane methyl wagging vibration in toluene, several fluoro-substituted toluenes and -methylpyrrole. The interaction leads to various spectroscopic constants becoming divorced from their usual physical meaning.

View Article and Find Full Text PDF

Characterizing Conical Intersections of Nucleobases on Quantum Computers.

J Chem Theory Comput

January 2025

Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.

Hybrid quantum-classical computing algorithms offer significant potential for accelerating the calculation of the electronic structure of strongly correlated molecules. In this work, we present the first quantum simulation of conical intersections (CIs) in a biomolecule, cytosine, using a superconducting quantum computer. We apply the contracted quantum eigensolver (CQE)─with comparisons to conventional variational quantum deflation (VQD)─to compute the near-degenerate ground and excited states associated with the conical intersection, a key feature governing the photostability of DNA and RNA.

View Article and Find Full Text PDF

Based on the DCV-C system of fullerene acceptor organic solar cell active materials, the charge transfer process of D-A type molecular materials under the action of an external electric field () was explored. Within the range of electric field application, the excited state characteristics exhibit certain regular changes. Based on reducing the excitation energy, the excitation mode shows a trend of developing toward low excited states.

View Article and Find Full Text PDF

Diet-Microbiome-ENS connection: Impact of the Cafeteria Diet.

Am J Physiol Gastrointest Liver Physiol

January 2025

Digestive Diseases, Emory University, Atlanta, GA, United States.

The interplay between diet-induced obesity and gastrointestinal dysfunction is an evolving area of research with far-reaching implications for understanding the gutbrain axis interactions. In their study, Ramírez-Maldonado et al. employ a cafeteria (CAF) diet model to investigate the effects on gut microbiota, enteric nervous system (ENS) integrity and function, and gastrointestinal motility in mice.

View Article and Find Full Text PDF

Ultrafast Charge Carrier Dynamics in Vanadium Dioxide, VO: Nonequilibrium Contributions to the Photoinduced Phase Transitions.

J Phys Chem Lett

January 2025

Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States.

Vanadium oxide (VO) is an exotic phase-change material with diverse applications ranging from thermochromic smart windows to thermal sensors, neuromorphic computing, and tunable metasurfaces. Nonetheless, the mechanism responsible for its metal-insulator phase transition remains a subject of vigorous debate. Here, we investigate the ultrafast dynamics of the photoinduced phase transition in VO under low perturbation conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!